Главная · Паразиты в организме · Стадии (фазы) митоза. Жизненный путь клеток. интерфаза. репликация Коротко об интерфазе

Стадии (фазы) митоза. Жизненный путь клеток. интерфаза. репликация Коротко об интерфазе

Промежуток времени между клеточными делениями называется интерфазой .

Некоторые цитологи выделяют два вида интерфаз: гетеросинтетическую и аутосинтетическую.

В период гетеросинтетеической интерфазы клетки работают на организм, выполняя свои функции составного компонента того или иного органа или такни. В период аутосинтетической интерфазы клетки готовятся к митозу или мейозу. В этой интерфазе выделяют три периода: пресинтетический – G 1 , синтетический – S, и постсинтетический – G 2 .

В S-периоде продолжается синтез белка и происходит репликация ДНК. В большинстве клеток этот период длится 8-12 часов.

В G 2 – периоде продолжается синтез РНК и белка (например, тубулина для построения микротрубочек веретена деления). Происходит накопление АТФ для энергетического обеспечения последующего митоза. Эта фаза длится 2-4- часа.

Кроме интерфазы, для характеристики временной организации клеток выделяют такие понятия, как жизненный цикл клеток, клеточный цикл и митотический цикл. Под жизненным циклом клетки понимают время жизни клетки с момента ее возникновения после деления материнской клетки и до конца ее собственного деления или же до гибели.

Клеточный цикл – это совокупность процессов, протекающих в аутосинтетическую интерфазу, и собственно митоз.

11. Митоз. Его сущность, фазы, биологическое значение. Амитоз.

МИТОЗ

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.



Рис.28 . Характеристика митоза и мейоза.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Рис.29. Амитоз.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

12. Мейоз. Стадии, биологическое значение.

МЕЙОЗ

Мейоз (греч. мейозис – уменьшение) имеет место на стадии созревания гамет. Благодаря мейозу из диплоидных незрелых половых клеток образуются гаплоидные гаметы: яйцеклетки и сперматозоиды. Мейоз включает в себя два деления: редукционное (уменьшительное) и эквационное (уравнительное), каждое из которых имеет те же фазы, что и митоз. Однако, несмотря на то, что клетки делятся два раза, удвоение наследственного материала происходит только один раз – перед редукционным делением - и отсутствует перед эквационным.

Цитогенетический результат мейоза (образование гаплоидных клеток и перекомбинация наследственного материала) происходит во время первого (редукционного) деления. Оно включает 4 фазы: профазу, метафазу, анафазу и телофазу.

Профаза I подразделяется на 5 стадий:
лептонемы, (стадия тонких нитей)
зигонемы
стадия пахинемы (толстых нитей)
стадии диплонемы
стадия диакинеза.

Рис.31. Мейоз. Процессы, происходящие при редукционном делении.

В стадии лептонемы происходит спирализация хромосом и их выявление в виде тонких нитей с утолщениями по длине. В стадии зигонемы продолжается компактизация хромосом, а гомологичные хромосомы сближаются попарно и конъюгируют: каждая точка одной хромосомы совмещается с соответствующей точкой гомологичной хромосомы (синапсис). Две рядом лежащие хромосомы образуют биваленты.

В пахинеме между хромосомами, составляющими бивалент, может происходить обмен гомологичными участками (кроссинговер). На этой стадии видно, что каждая конъюгирующая хромосома состоит из двух хроматид, а каждый бивалент – из четырех хроматид (тетрад).

Диплонема характеризуется, появлением сил отталкивания конъюгатов начиная от центромер, а затем и в других участках. Хромосомы остаются связанными между собой только в местах кроссинговера.

В стадии диакинеза (расхождение двойных нитей) парные хромосомы частично расходятся. Начинается формирование веретена деления.

В метафазе I пары хромосом (биваленты) выстраиваются по экватору веретена деления, образуя метафазную пластинку.

В анафазе I к полюсам расходятся двухроматидные гомологичные хромосомы, и на клеточных полюсах скапливается их гаплоидный набор. В телофазе 1 происходят цитотомия и восстановление структуры интерфазных ядер, каждое из которых содержит гаплоидное число хромосом, но диплоидное количество ДНК (1n2c). После редукционного деления клетки переходят в короткую интерфазу, во время которой не наступает период S, и начинается эквационное (2-е) деление. Оно протекает, как обычный митоз, в результате чего образуются половые клетки, содержащие гаплоидный набор однохроматидных хромосом (1n1c)

Рис.32 . Мейоз. Эквационное деление.

Таким образом, во время второго мейотического деления количество ДНК приводится в соответствие с количеством хромосом.

12.Гаметогенез: ово - и сперматогенез.
Размножение, или самовоспроизведение, является одной из важнейших характеристик природы и присуще живым организмам. Передача генетического материала от родителей к следующему поколению в процессе размножения обеспечивает непрерывность существования рода. Процесс размножения у человека начинается с момента проникновения мужской половой клетки в женскую половую клетку.

Гаметогенез – это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез).

Гаметогенез протекает в половых железах - сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки - яйцеклетки, а у мужчин - мужские половые клетки сперматозоиды.
Именно процесс гаметогенез (сперматогенез, овогенез) дает возможность мужчине и женщине возможность воспроизведения потомства.

Промежуток времени между клеточными делениями называется интерфазой .

Некоторые цитологи выделяют два вида интерфаз: гетеросинтетическую и аутосинтетическую.

В период гетеросинтетеической интерфазы клетки работают на организм, выполняя свои функции составного компонента того или иного органа или такни. В период аутосинтетической интерфазы клетки готовятся к митозу или мейозу. В этой интерфазе выделяют три периода: пресинтетический – G 1 , синтетический – S, и постсинтетический – G 2 .

В S-периоде продолжается синтез белка и происходит репликация ДНК. В большинстве клеток этот период длится 8-12 часов.

В G 2 – периоде продолжается синтез РНК и белка (например, тубулина для построения микротрубочек веретена деления). Происходит …
накопление АТФ для энергетического обеспечения последующего митоза. Эта фаза длится 2-4- часа.

Кроме интерфазы, для характеристики временной организации клеток выделяют такие понятия, как жизненный цикл клеток, клеточный цикл и митотический цикл. Под жизненным циклом клетки понимают время жизни клетки с момента ее возникновения после деления материнской клетки и до конца ее собственного деления или же до гибели.

Клеточный цикл – это совокупность процессов, протекающих в аутосинтетическую интерфазу, и собственно митоз.

11. Митоз. Его сущность, фазы, биологическое значение. Амитоз.

МИТОЗ

Митоз (от греч. митос – нить), или кариокинез (греч. карион – ядро, кинезис – движение), или непрямое деление. Это процесс, в ходе которого происходит конденсация хромосом и равномерное распределение дочерних хромосом между дочерними клетками. Митоз включает в себя пять фаз: профаза, прометафаза, метафаза, анафаза и телофаза. В профазе хромосомы конденсируются (скручиваются), становятся заметными и располагаются в виде клубка. Центриоли делятся на две и начинают двигаться к клеточным полюсам. Между центриолями появляются нити, состоящие из белка тубулина. Происходит образование митотического веретена. В прометафазе ядерная оболочка распадается на мелкие фрагменты, а погруженные в цитоплазму хромосомы начинают двигаться к экватору клетки. В метафазе хромосомы устанавливаются на экваторе веретена и становятся максимально компактизированными. Каждая хромосома состоит из двух хроматид, связанных друг с другом центромерами, а концы хроматид расходятся, и хромосомы принимают Х-образную форму. В анафазе дочерние хромосомы (бывшие сестринские хроматиды) расходятся к противоположным полюсам. Предположение о том, что это обеспечивается сокращением нитей веретена, не подтвердилось.

Рис.28 . Характеристика митоза и мейоза.

Многие исследователи поддерживают гипотезу скользящих нитей, согласно которой соседние микротрубочки веретена деления, взаимодействуя друг с другом и сократительными белками, тянут хромосомы к полюсам. В телофазе дочерние хромосомы достигают полюсов, деспирализуются, образуется ядерная оболочка, восстанавливается интерфазная структура ядер. Затем наступает разделение цитоплазмы – цитокинез. В животных клетках этот процесс проявляется в перетяжке цитоплазмы за счет втягивания плазмолеммы между двумя дочерними ядрами, а в растительных клетках мелкие пузырьки ЭПС, сливаясь, образуют изнутри цитоплазмы клеточную мембрану. Целлюлозная клеточная стенка образуется за счет секрета, накапливающегося в диктиосомах.

Продолжительность каждой из фаз митоза различна – от нескольких минут до сотен часов, что зависит как от внешних, так и внутренних факторов и типа тканей.

Нарушение цитотомии приводит к образованию многоядерных клеток. При нарушении репродукции центриолей могут возникнуть многополюсные митозы.

АМИТОЗ

Это прямое деление ядра клетки, сохраняющего интерфазную структуру. При этом хромосомы не выявляются, не происходит образования веретена деления и их равномерного распределения. Ядро делится путем перетяжки на относительно равные части. Цитоплазма может делиться перетяжкой, и тогда образуются две дочерние клетки, но может и не делиться, и тогда образуются двуядерные или многоядерные клетки.

Рис.29. Амитоз.

Амитоз как способ деления клеток может встречаться в дифференцированных тканях, например, скелетных мышцах, клетках кожи, а также в патологических изменениях тканях. Однако он никогда не встречается в клетках, нуждающихся в сохранении полноценной генетической информации.

12. Мейоз. Стадии, биологическое значение.

МЕЙОЗ

Мейоз (греч. мейозис – уменьшение) имеет место на стадии созревания гамет. Благодаря мейозу из диплоидных незрелых половых клеток образуются гаплоидные гаметы: яйцеклетки и сперматозоиды. Мейоз включает в себя два деления: редукционное (уменьшительное) и эквационное (уравнительное), каждое из которых имеет те же фазы, что и митоз. Однако, несмотря на то, что клетки делятся два раза, удвоение наследственного материала происходит только один раз – перед редукционным делением — и отсутствует перед эквационным.

Цитогенетический результат мейоза (образование гаплоидных клеток и перекомбинация наследственного материала) происходит во время первого (редукционного) деления. Оно включает 4 фазы: профазу, метафазу, анафазу и телофазу.

Профаза I подразделяется на 5 стадий:
лептонемы, (стадия тонких нитей)
зигонемы
стадия пахинемы (толстых нитей)
стадии диплонемы
стадия диакинеза.

Рис.31. Мейоз. Процессы, происходящие при редукционном делении.

В стадии лептонемы происходит спирализация хромосом и их выявление в виде тонких нитей с утолщениями по длине. В стадии зигонемы продолжается компактизация хромосом, а гомологичные хромосомы сближаются попарно и конъюгируют: каждая точка одной хромосомы совмещается с соответствующей точкой гомологичной хромосомы (синапсис). Две рядом лежащие хромосомы образуют биваленты.

В пахинеме между хромосомами, составляющими бивалент, может происходить обмен гомологичными участками (кроссинговер). На этой стадии видно, что каждая конъюгирующая хромосома состоит из двух хроматид, а каждый бивалент – из четырех хроматид (тетрад).

Диплонема характеризуется, появлением сил отталкивания конъюгатов начиная от центромер, а затем и в других участках. Хромосомы остаются связанными между собой только в местах кроссинговера.

В стадии диакинеза (расхождение двойных нитей) парные хромосомы частично расходятся. Начинается формирование веретена деления.

В метафазе I пары хромосом (биваленты) выстраиваются по экватору веретена деления, образуя метафазную пластинку.

В анафазе I к полюсам расходятся двухроматидные гомологичные хромосомы, и на клеточных полюсах скапливается их гаплоидный набор. В телофазе 1 происходят цитотомия и восстановление структуры интерфазных ядер, каждое из которых содержит гаплоидное число хромосом, но диплоидное количество ДНК (1n2c). После редукционного деления клетки переходят в короткую интерфазу, во время которой не наступает период S, и начинается эквационное (2-е) деление. Оно протекает, как обычный митоз, в результате чего образуются половые клетки, содержащие гаплоидный набор однохроматидных хромосом (1n1c)

Рис.32 . Мейоз. Эквационное деление.

Таким образом, во время второго мейотического деления количество ДНК приводится в соответствие с количеством хромосом.

12.Гаметогенез: ово — и сперматогенез.
Размножение, или самовоспроизведение, является одной из важнейших характеристик природы и присуще живым организмам. Передача генетического материала от родителей к следующему поколению в процессе размножения обеспечивает непрерывность существования рода. Процесс размножения у человека начинается с момента проникновения мужской половой клетки в женскую половую клетку.

Гаметогенез – это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез).

Гаметогенез протекает в половых железах — сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки — яйцеклетки, а у мужчин — мужские половые клетки сперматозоиды.
Именно процесс гаметогенез (сперматогенез, овогенез) дает возможность мужчине и женщине возможность воспроизведения потомства.

1 ) постмитотический (пресинтетический) q 1 (G 1) – от 10 часов до нескольких суток. Следует вслед за делением. В молодых дочерних клетках наблюдается высокая интенсивность процессов транскрипции, формирование синтетического аппарата клетки – увеличение количества рибосом, различных видов РНК (рРНК, мРНК, иРНК). Усиление синтеза белка, синтезируются структурные и функциональные белки, интенсивный клеточный метаболизм, контролируемый ферментами, рост клетки, образование и восстановление необходимого числа органоидов

2 ) синтетический S - 6 – 10 часов; Значительным событием является удвоение (редупликация ДНК), что приводит к удвоению плоидности (содержание ДНК удваивается) диплоидных ядер (хромосомы становятся двухроматидными) и является обязательным условием для последующего митотического деления клеток. Происходит также синтез РНК, гистоновых белков, продолжается рост клетки.

3 ) постсинтетический (премитотический ) q 2 (G 2) – 2 – 5 часов. Продолжается синтез РНК, всех белков, особенно ядерных, а также белка тубулина необходимого для формирования ахроматинового веретена митотического аппарата, образующегося в профазе митоза и мейоза. Происходит накопление питательных веществ, энергии, синтез АТФ. Деление митохондрий, хлоропластов, репликация центриолей и начало образования веретена деления. В конце этого периода клетка переходит к профазе митоза.

Главные события митотического цикла:

1) редупликация самоудвоение наследственного материала (синтетический период)

2) равномерное распределение наследственного материала между дочерними клетками (анафаза митоза – распределение хроматид – дочерних хромосом.)

Соотношение количества днк (с) и хромосом (n) в митотическом цикле:

МИТОЗ: 1) Профаза 2п 4с, 2) Метафаза 2п 4с, 3) Анафаза 4п 4с (однохроматидные дочерние хромосомы), 4) Телофаза 2п 2с (однохроматидные дочерние хромосомы)

ИНТЕРФАЗА : 1) Постмитотический период 2п 2с (однохроматидные дочерние-сестринские хромосомы)

2) Синтетический период 2п 4с, 3) Постсинтетический период 2п 4с (двухроматидных материнские хромосомы)

Обратить внимание, что хроматида содержит одну молекулу ДНК (с).

Образование сестринской

хроматиды

Хромосома интерфазного ядра

Схема митотического цикла

Жизненный цикл клеток (клеточный цикл) – это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти. Обязательным компонентом жизненного цикла, является митотический цикл. Многие клетки выходят из митотического цикла на путь специализации, дифференцируются, выполняют определённые функции и их жизнь заканчивается смертью. Однако некоторые дифференцированные клетки (эпителиальные, соединительно-тканные) при определённых условиях переходят к подготовке к митозу и самому митозу. У таких клеток жизненный цикл продолжительнее митотического. Для разных типов клеток жизненный цикл различен.В некоторых клетках отсутствуют те или иные фазы митотического цикла. Часть клеток выходят из митотического цикла на путь дифференцировки и специализации, их пресинтетический период удлиняется. У нервных клеток этот период продолжается в течение всей жизни организма, и они не делятся, поэтому жизненный цикл таких клеток, например, нервных, не совпадает с митотическим циклом. Клетки, образующие обновляющиеся клеточные популяции постоянно делятся, проходя митоз и интерфазу, имеют клеточный цикл, совпадающий с митотическим циклом это, например эмбриональные клетки, ростовые базального слоя кожи, клетки образовательной ткани растений (кончик корня, стебля, камбий), регенерирующие клетки, клетки семенников.

Интерфаза — это период жизненного цикла клетки, заключенный между концом предыдущего деления и началом следующего. С репродуктивной точки зрения такое время можно назвать подготовительным этапом, а с биофункциональной — вегетативным. В период интерфазы клетка растет, достраивает утраченные при делении структуры, а затем метаболически перестраивается для перехода к митозу или мейозу, если какие-либо причины (например, тканевая дифференцировка) не выведут ее из жизненного цикла.

Так как интерфаза — это промежуточное состояние между двумя мейотическими или митотическими делениями, ее иначе называют интеркинезом. Однако второй вариант термина можно использовать только применительно к клеткам, которые не потеряли способности к делению.

Общая характеристика

Интерфаза — самая продолжительная часть клеточного цикла. Исключение составляет сильно укороченный интеркинез между первым и вторым делениями мейоза. Примечательной особенностью данного этапа является также то, что здесь не происходит дуплицирование хромосом, как в интерфазе митоза. Эта особенность связана с необходимостью уменьшения диплоидного набора хромосом до гаплоидного. В некоторых случаях межмейотический интеркинез может полностью отсутствовать.

Стадии интерфазы

Интерфаза — это обобщенное название трех следующих друг за другом периодов:

  • пресинтетического (G1);
  • синтетического (S);
  • постсинтетического (G2).

В клетках, не выпадающих из цикла, стадия G2 непосредственно переходит в митоз и потому иначе называется премитотической.

G1 — это этап интерфазы, наступающий сразу после деления. Поэтому клетка имеет вдвое меньший размер, а также пониженное примерно в 2 раза содержание РНК и белков. На протяжении всего пресинтетического периода происходит восстановление всех компонентов до нормы.

За счет накопления белка клетка постепенно растет. Происходит достройка необходимых органелл и увеличение объема цитоплазмы. Одновременно с этим растет процентное содержание различных РНК и синтезируются ДНК-предшественники (нуклеотидтрифосфаткиназы и др.). По этой причине блокировка продуцирования информационных РНК и протеинов, характерных для G1, исключает переход клетки к S-периоду.

На этапе G1 отмечается резкое повышение энзимов, задействованных в энергетическом обмене. Период также характеризуется высокой биохимической активностью клетки, а накопление структурно-функциональных компонентов дополняется запасанием большого количества молекул АТФ, которые будут служить энергетическим резервом для последующей перестройки хромосомного аппарата.

Синтетический этап

В S-период интерфазы происходит ключевой момент, необходимый для деления, - репликация ДНК. При этом удваиваются не только генетические молекулы, но и число хромосом. В зависимости от времени осмотра клетки (в начале, в середине либо в конце синтетического периода) можно обнаружить количество ДНК от 2 до 4 с.

S-этап представляет собой ключевой переходный момент, который "решает", наступит ли деление. Единственным исключением из этого правила является интерфаза между мейозами I и II.

В клетках, постоянно находящихся в состоянии интерфазы, S-период не наступает. Таким образом, клетки, которые не будут делиться снова, останавливаются на стадии с особым названием — G0.

Постсинтетический этап

Период G2 — окончательный этап подготовки к делению. На этой стадии осуществляется синтез молекул информационных РНК, необходимых для прохождения митоза. Одним из ключевых белков, которые продуцируются в это время, являются тубулины, служащие строительным материалом для формирования веретена деления.

На границе между постсинтетическим этапом и митозом (или мейозом) синтез РНК резко снижается.

Что такое клетки G0

Для некоторых клеток интерфаза — это постоянное состояние. Оно характерно для некоторых составляющих специализированных тканей.

Состояние неспособности к делению условно обозначается стадией G0, поскольку G1-период также считается фазой подготовки к митозу, хоть и не включает связанные с этим морфологические перестройки. Таким образом, G0-клетки считаются выпавшими из цитологического цикла. При этом состояние покоя может быть как постоянным, так и временным.

В фазу G0 чаще всего переходят клетки, завершившие дифференциацию и специализировавшиеся на конкретных функциях. Однако в некоторых случаях такое состояние обратимо. Так, например, клетки печени при повреждении органа могут восстанавливать способность к делению и переходить из состояния G0 в период G1. Этот механизм лежит в основе регенерации организмов. В нормальном состоянии большая часть клеток печени находится в фазе G0.

В некоторых случаях G0-состояние является необратимым и сохраняется до цитологической смерти. Такое характерно, например, для ороговевающих клеток эпидермиса или кардиомиоцитов.

Иногда, наоборот, переход в G0-период вовсе не означает потерю способности к делению, а лишь предусматривает планомерную приостановку. К этой группе относят камбиальные клетки (например, стволовые).

Длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий (Pardee, 1978 ; Yanishevsky, 1981). Однако в интерфазе выделяют фазу G{ l1}l , фазу S и фазу G{ l2}l . Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван "фаза S " (от слова synthesis).

Период между фазой М и началом фазы S обозначен как фаза G{l1}l (от слова gap - промежуток), а период между концом фазы S и последующей фазой М - как фаза G{ l2}l. Во время G{l1}l-фазы возобновляются интенсивные биосинтетические процессы, резко замедленные во время клеточного деления.

Фаза G{ l2}l нужна для подготовки клеток к митозу (Johnson, 1970; ; Bradbury, 1974 ; Isenberg, 1979) . См. далее Клетка: фаза G{l2}l

Длительность митотического цикла варьирует у разных организмов в широких пределах. Самые короткие клеточные циклы обнаружены у дробящихся яиц некоторых животных. Например, у золотой рыбки первые деления дробления совершаются через 20 мин (подробнее об этом в разделе индивидуальное развитие). Довольно распространены митотические циклы длительностью 18-20 ч. Встречаются циклы, которые продолжаются несколько суток. Время от деления до деления клеток может значительно отличаться в пределах одного и того же организма. Так, при изучении длительности клеточных циклов эпителиальных клеток мыши выяснилось, что в двенадцатиперстной кишке эпителиальные клетки делятся каждые 11 ч, в тощей кишке - примерно через 19 ч, в роговице глаза - через 3 суток, а в кожном эпителии от деления до деления проходит больше 24 суток. Время, которое клетка тратит непосредственно на деление, составляет обычно 1-3 ч (эмбриональные митозы много короче). Таким образом, основную часть жизни клетки находятся в интерфазе. Название этой стадии возникло еще в прошлом веке, когда о деятельности клеток могли судить только по изменениям их морфологии, так как единственным инструментом исследования был световой микроскоп. Поскольку заметные морфологические изменения клеток происходили во время деления, то к ним и было приковано внимание биологов, а период между делениями получил название промежуточного (лат. inter - между) или фазы покоя. Благодаря появлению современных методов изучения клетки - электронной микроскопии , авторадиографии , возможности измерять содержание различных внутриклеточных веществ - удалось установить, что в интерфазе происходят важнейшие события клеточной жизни, в частности удвоение хромосом.

Обычно интерфазу подразделяют на три периода: пресинтетический, синтетический и постсинтетический. Пресинтетический (Gi) период (англ. gap - интервал) следует непосредственно за делением. Как правило, это самый длительный период интерфазы ( рис. 61). В клетках эукариот он продолжается от 10 ч до нескольких суток. Во время него происходит подготовка клетки к удвоению хромосом: синтезируется РНК, образуются различные белки, в частности необходимые для образования предшественников ДНК. При этом увеличивается количество рибосом и поверхность шероховатой эндоплазматической сети, растет число митохондрий. Все это приводит к тому, что клетка интенсивно растет. В синтетическом (S) периоде продолжается синтез РНК и белков и одновременно происходит удвоение хромосом, в основе которого лежит процесс репликации ДНК .

Вновь синтезированная ДНК сразу же соединяется с хромосомными белками . Синтез ДНК продолжается несколько часов, обычно 6-10. По его окончании каждая хромосома оказывается удвоенной - состоящей из двух сестринских хроматид. В генетическом отношении хроматиды полностью идентичны друг другу, так как их ДНК состоит из одной материнской и второй вновь синтезированной цепи. Сестринские хроматиды тесно сближены и соединены в том районе хромосомы, который обеспечивает ее движение при делении клетки. Он называется центромерным районом хромосомы ( рис. 62 , рис. 63).

После полного удвоения хромосом наступает постсинтетический период (G2) . В это время клетка готовится к делению: синтезируются белки микротрубочек , которые во время митоза будут формировать веретено деления, запасается энергия. Продолжительность G2-периода меньше, чем у S- и Gi-периодов, и обычно составляет 3-6 ч.