Главная · Паразиты в организме · Рассчитать расстояние от линзы до изображения. F – фокусное расстояние линзы

Рассчитать расстояние от линзы до изображения. F – фокусное расстояние линзы

Дальневосточный федеральный университет

Кафедра общей физики

ЛАБОРАТОРНАЯ РАБОТА № 1.1

Определение фокусных расстояний собирающей и рассеивающей линз по методу Бесселя

Владивосток

Цель работы: изучение свойств собирающих и рассеивающих линз и их систем, ознакомление с методом Бесселя, определение фокусного расстояния линзы.

Краткая теория

Линзой называется прозрачное для света тело, ограниченное двумя сферическими поверхностями. Основные виды линз представлены на рис.1.

Собирающие (в воздухе):

1 – двояковыпуклая линза,

2 – плоско-выпуклая линза,

3 – вогнуто-выпуклая линза.

Рассеивающие (в воздухе):

4 – двояковогнутая линза,

5 – плоско-вогнутая линза,

6 – выпукло-вогнутая линза.

Тонкой называется линза, толщина которой намного меньше любого из ее радиусов кривизны.

Оптическая система называется центрированной, если центры кривизны всех ее преломляющих поверхностей лежат на одной прямой, называемой главной оптической осью системы. Точка пересечения плоскости линзы с оптической осью называется оптическим центром тонкой линзы. Любая прямая, проходящая через оптический центр линзы и не совпадающая с главной оптической осью, называется побочной оптической осью.

Если на собирающую линзу падают лучи, параллельные главной оптической оси, то они, после преломления в линзе, пересекаются в одной точке, лежащей на главной оптической оси и называемой главным фокусом линзы F(рис. 2). У линзы имеется два главных фокуса по обе стороны от нее. Расстояниеfот оптического центра до фокуса называется фокусным расстоянием. Если радиусы кривизны поверхностей линзы одинаковы и с обеих сторон от линзы среда одна и та же, то фокусные расстояния линзы одинаковы.

Рис. 2. Ход лучей в собирающей линзе.

Если на рассеивающую линзу падают лучи, параллельные главной оптической оси, то в одной точке, также называемой главным фокусом, пересекаются не сами преломленные лучи, а их продолжения (рис.3). Фокус в этом случае называется мнимым, а фокусное расстояние считается отрицательным. У рассеивающей линзы также два главных фокуса по обе стороны от нее.

Рис. 3. Ход лучей в рассеивающей линзе.

Плоскость, проходящая через главный фокус линзы перпендикулярно главной оптической оси, называется фокальной плоскостью, а точка пересечения какой-либо побочной оси с фокальной плоскостью называется побочным фокусом. Если на линзу падает пучок лучей, параллельных какой-то побочной оси, то после преломления либо сами лучи, либо их продолжения (в зависимости от вида линзы) пересекаются в соответствующем побочном фокусе. Лучи, идущие через оптический центр тонкой линзы, своего направления практически не меняют.

Построение изображения в линзах. Для построения изображения светящейся точки из этой точки надо взять не менее двух лучей, падающих на линзу, и построить ход этих лучей. Как правило, выбираются лучи, параллельные главной оптической оси, проходящие через главный фокус линзы, или идущие через оптический центр линзы. Пересечение этих лучей, либо их продолжений, дает действительное или мнимое изображение точки. Для получения изображения отрезка строят изображения его крайних точек. Если светящийся предмет – небольшой отрезок, перпендикулярный главной оптической оси, то его изображение тоже будет представляться отрезком, перпендикулярным главной оптической оси. Проще всего построить изображение отрезка, одна из двух крайних точек которого лежит на главной оптической оси: в этом случае строится изображение другой его крайней точки и опускается перпендикуляр на главную оптическую ось (рис. 4). Для построения изображений также могут быть использованы побочные оптические оси и побочные фокусы. В зависимости от вида линзы и положения предмета относительно линзы изображение может быть увеличенным или уменьшенным.

При построении изображений используют условные изображения тонкой линзы:

↕ - двояковыпуклая линза, ‍‍‍‍↕ - двояковогнутая линза

Рис. 4а. Построение действительного изображения в тонкой собирающей линзе (предмет находится за фокусом).

Рис. 4б. Построение мнимого изображения в тонкой собирающей линзе (предмет находится между фокусом и линзой).

Рис. 4в. Построение мнимого изображения в тонкой рассеивающей линзе (предмет находится за фокусом).

Формула линзы. Если обозначить расстояние от предмета до линзы –s, а расстояние от линзы до изображения -s′, то формулу тонкой линзы можно записать в виде:

где R 1 иR 2 – радиусы кривизны сферических поверхностей линзы,n 1 – показатель преломления вещества, из которого сделана линза,n 2 – показатель преломления среды, в которой находится линза.

Величина D, обратная фокусному расстоянию линзы, называется оптической силой линзы и измеряется в диоптриях. У собирающей линзы оптическая сила положительна, у рассеивающей – отрицательна.

Другой важный параметр линзы – линейное увеличение Г. Оно показывает, чему равно отношение линейного размера изображения h′ к соответствующему размеру предметаh. Можно показать, что Г=h′/h=s′/s.

Недостатки изображения в линзе.

Сферическая аберрация приводит к тому, что изображение точки получается неточечным, а в виде небольшого кружка. Этот недостаток связан с тем, что лучи, прошедшие через центральную область линзы и лучи, прошедшие через ее края, собираются не в одной точке.

Хроматическая аберрация наблюдается при прохождении через линзу сложного света, содержащего волны разной длины. Показатель преломления зависит от длины волны. Это приводит к тому, что края изображения имеют радужную окраску.

Астигматизм – это дефект изображения, связанный с зависимостью фокусного расстояния от угла падения света на линзу. Это приводит к тому, что изображение точки может иметь вид кружка, эллипса, отрезка.

Дисторсия – это недостаток изображения, который имеет место, если поперечное увеличение предмета линзой в пределах поля зрения неодинаково. Если увеличение убывает от центра к периферии, имеет место бочкообразная дисторсия, а если наоборот – то подушкообразная дисторсия.

Недостатки изображения стремятся устранить или уменьшить путем подбора системы линз.

Теория метода.

Удобным методом определения фокусного расстояния линзы является метод Бесселя. Он заключается в том, что при достаточно большом расстоянии Lмежду предметом и экраном можно найти два положения линзы, при которых получается четкое изображение предмета – в одном случае увеличенное, в другом – уменьшенное.

Эти положения можно найти, решая систему из двух уравнений:

1/ s′ + 1/ s= 1/f.

Выразив s′ из первого уравнения, и подставив полученное выражение во второе, получим квадратное уравнение, решение которого можно записать:

. (1)

Так как дискриминант этого уравнения должен быть больше нуля: L 2 – 4Lf≥0, тоL≥4f– только при таком условии можно получить два четких изображения предмета.

Из формулы (1) следует, что существует два положения линзы, дающих четкое изображение предмета, симметрично расположенных относительно центра отрезка между предметом и экраном. Расстояние rмежду этими положениями можно найти из формулы:

. (2)

Если из данной формулы выразить фокусное расстояние линзы, то получим:

. (3)

Фокусное расстояние рассеивающей линзы так определить нельзя, т.к. она не дает действительных изображений предмета. Но если рассеивающую линзу сложить с более сильной собирающей линзой, то получится собирающая система линз. Фокусные расстояния системы и собирающей линзы можно найти по методу Бесселя, а фокусное расстояние рассеивающей линзы определить затем из соотношения:

1/f Σ =1/f + + 1/f - , откуда следует:

. (4)

Лабораторная установка

Лабораторная установка включает в себя оптическую скамью стержневого типа. Линзы в оправах размещаются между стержнями и могут перемещаться вдоль них. Для отсчета расстояния служит рулетка. Для имитации светящегося предмета используется двумерная дифракционная решетка (центральная зона объекта МОЛ-1), освещаемая лазером. Изображении е на экране представляет собой крестообразную фигуру, состоящую из ярких пятен. Внешний вид установки представлен на рис. 5.

1 – лазер,

2 – дифракционная решетка,

3 – линза,

4 – экран,

5 – оптическая скамья.

Рис.5. Установка для определения фокусного расстояния линзы.

Порядок выполнения работы

    Установить лазер, решетку и экран. Включить лазер. При правильной установке светлое пятно должно находиться в центре экрана и иметь округлую форму. Измерить расстояние Lмежду решеткой и экраном.

    Установить в тракт собирающую линзу. Перемещая ее, найти координаты х 1 и х 2 двух ее положений, дающих четкие увеличенное и уменьшенное изображения. Повторить измерения 5 раз. Результаты занести в таблицу.

    Установить в тракт рассеивающую линзу. Повторить измерения по п.2 для системы из двух линз. Результаты занести в таблицу.

    Вынуть линзы из обоймы и установить экран так, чтобы были четко видны световые пятна, образующие крест. Поставить примерно на середине расстояния между решеткой и экраном сначала одну линзу, затем другую, затем обе и зарисовать структуру распределения световых пятен в каждом случае.

    Определить средние значения координат х 1 и х 2 для одной линзы и для системы линз, найти расстояниеrв каждом случае по формуле (2).

    Определить фокусные расстояния для собирающей линзы и для системы из двух линз по формуле (3). Посчитать погрешности измерений.

    Определить фокусное расстояние рассеивающей линзы по формуле

    На основании сделанных зарисовок (п.4) сделать вывод о характере дисторсии каждой линзы и системы из двух линз.

Собирающая линза

Система из двух линз

Контрольные вопросы

    Какая линза называется тонкой?

    Что такое главная оптическая ось линзы, главный фокус линзы (собирающей и рассеивающей)?

    Что такое побочная оптическая ось, побочный фокус?

    Запишите и поясните формулу тонкой линзы. Что называется оптической силой и увеличением линзы?

    Каковы основные недостатки изображений в линзе, в чем их суть?

    Постройте изображение предмета в линзе (вид линзы и положение предмета задается преподавателем).

    В чем сущность метода Бесселя?

Фокусное расстояние линзы зависит от степени кривизны её поверхности. Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с менее выпуклыми поверхностями, и поэтому обладает меньшим фокусным расстоянием.

Для определения фокусного расстояния собирающей линзы необходимо направить на неё солнечные лучи и, получив на экране за линзой резкое изображение Солнца, измерить расстояние от линзы до этого изображения. Поскольку лучи ввиду чрезвычайной удаленности Солнца будут падать на линзу практически параллельным пучком, то это изображение будет располагаться почти в фокусе линзы.

Физическая величина, обратная фокусному расстоянию линзы, называется оптической силой линзы (D):

D=1

Чем меньше фокусное расстояние линзы, тем больше её оптическая сила, т.е. тем сильнее она преломляет лучи. Ед. изм. (м -1) . Иначе эта единица называется диоптрией (дптр).

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

У собирающих и рассеивающих линз оптические силы отличаются знаком.

Собирающие линзы обладают действительным фокусом, поэтому их фокусное расстояние и оптическая сила считаются положительными (F>0, D>0).

Рассеивающие линзы обладают мнимым фокусом, поэтому их фокусное расстояние и оптическая сила считаются отрицательными (F<0, D<0).

Многие оптические приборы состоят из нескольких линз. Оптическая сила системы нескольких близкорасположенных линз равна сумме оптических сил всех линз этой системы. Если имеются две линзы с оптическими силами D 1 и D 2 , тоих общая оптическая сила будет равна: D= D 1 + D 2

Складываются лишь оптические силы, фокусное расстояние нескольких линз не совпадает с суммой фокусных расстояний отдельных линз.

При помощи линз можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Для построения изображения в линзах достаточно построения хода двух лучей: один проходит через оптический центр линзы без преломления, второй - луч, параллельный главной оптической оси.

1. Предмет находится между линзой и фокусом:

Изображение – увеличенное, мнимое, прямое. Такие изображения получают при пользовании лупой

2. Предмет находиться между фокусом и двойным фокусом

Изображение - действительное, увеличенное, перевернутое. Такие изображения получают в проекционных аппаратах.

3. Предмет за двойным фокусом

Линза дает уменьшенное, перевернутое, действительное изображение. Такое изображение используется в фотоаппарате.

Рассеивающая линза при любом расположении предмета дает уменьшенное, мнимое, прямое изображение. Она образует расходящийся пучок света


Глаз человека имеет почти шарообразную форму.

Его окружает плотная оболочка, которая называется склерой. Передняя часть склеры прозрачна и называется роговой оболочкой. За роговой оболочкой находится радужная оболочка, которая может быть окрашена у разных людей по-разному. Между роговой и радужной оболочками находится водянистая жидкость.

В радужной оболочке есть отверстие – зрачок, диаметр которого может изменяться в зависимости от освещения. За зрачком расположено прозрачное тело – хрусталик, который похож на двояко-выпуклую линзу. Хрусталик прикреплен мышцами к склере.

За хрусталиком расположено стекловидное тело. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры – глазное дно, покрыто сетчаткой.

Сетчатка состоит из тончайший волокон, которые устилают глазное дно. Они представляют собой разветвленные окончания зрительного нерва.

Свет, падающий на глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле, благодаря чему на сетчатке образуется действительное, уменьшенное, перевернутое изображение рассматриваемого предмета.

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное восприятие окружающего мира. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

Кривизна хрусталика может изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика не велика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна увеличивается.

Расстояние наилучшего видения для нормального глаза равно 25 см. Зрение двумя глазами увеличивает поле зрения, а также позволяет различить, какой предмет находиться ближе, а какой – дальше от нас. Дело в том, что на сетчатках левого и правого глаза получаются отличные друг от друга изображения. Чем ближе предмет, тем заметнее это отличие, оно и создает впечатление разницы в расстояниях. Благодаря зрению двумя глазами мы видим предмет объемным.

У человека с хорошим, нормальным зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Иначе обстоит дело у людей, страдающих близорукостью и дальнозоркостью.

Близорукость – это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удаленных предметов поэтому оказываются на сетчатке нечеткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Дальнозоркость – это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удаленных предметов на сетчатке при этом снова оказываются нечеткими, расплывчатыми. Поскольку дальнозоркий глаз не способен сфокусировать на сетчатке даже параллельные лучи, то еще хуже он собирает расходящиеся лучи, идущие от близкорасположенных предметов. Поэтому дальнозоркие люди плохо видят т вдали, и вблизи.

Разработки уроков (конспекты уроков)

Линия УМК А. В. Перышкина. Физика (7-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цели урока:

  • выяснить что такое линза, провести их классификацию, ввести понятия: фокус, фокусное расстояние, оптическая сила, линейное увеличение;
  • продолжить развитие умений решать задачи по теме.

Ход урока

Пою перед тобой в восторге похвалу
Не камням дорогим, ни злату, но СТЕКЛУ.

М.В. Ломоносов

В рамках данной темы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а также выведем формулу для тонкой линзы.

Ранее познакомились с преломлением света, а также вывели закон преломления света.

Проверка домашнего задания

1) опрос § 65

2) фронтальный опрос (см. презентацию)

1.На каком из рисунков правильно показан ход луча, проходящего через стеклянную пластину, находящуюся в воздухе?

2. На каком из приведённых ниже рисунков правильно построено изображение в вертикально расположенном плоском зеркале?


3.Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1–4 соответствует преломленному лучу?


4. Котёнок бежит к плоскому зеркалу со скоростью V = 0,3 м/с. Само зеркало движется в сторону от котёнка со скоростью u = 0,05 м/с. С какой скоростью котёнок приближается к своему изображению в зеркале?


Изучение нового материала

Вообще, слово линза - это слово латинское, которое переводится как чечевица. Чечевица - это растение, плоды которого очень похожи на горох, но горошины не круглые, а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, и стали называть линзами.


Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 год до нашей эры), где с помощью выпуклого стекла и солнечного света добывали огонь. А возраст самой древней из обнаруженных линз более 3000 лет. Это так называемая линза Нимруда . Она была найдена при раскопках одной из древних столиц Ассирии в Нимруде Остином Генри Лэйардом в 1853 году. Линза имеет форму близкую к овалу, грубо шлифована, одна из сторон выпуклая, а другая плоская. В настоящее время она храниться в британском музее - главном историко-археологическом музее Великобритании.

Линза Нимруда

Итак, в современном понимании, линзы - это прозрачные тела, ограниченные двумя сферическими поверхностями. (записать в тетрадь) Чаще всего используются сферические линзы, у которых ограничивающими поверхностями выступают сферы или сфера и плоскость. В зависимости от взаимного размещения сферических поверхностей или сферы и плоскости, различают выпуклые и вогнутые линзы . (Дети рассматривают линзы из набора «Оптика»)

В свою очередь выпуклые линзы делятся на три вида - плоско выпуклые, двояковыпуклые и вогнуто-выпуклая; а вогнутые линзы подразделяются на плосковогнутые, двояковогнутые и выпукло-вогнутые.


(записать)

Любую выпуклую линзы можно представить в виде совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к середине линзы, а вогнутую - как совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к краям.

Известно, что если призма будет сделана из материала, оптически более плотного, чем окружающая среда, то она будет отклонять луч к своему основанию. Поэтому параллельный пучок света после преломления в выпуклой линзе станет сходящимся (такие называются собирающими ), а в вогнутой линзе наоборот, параллельный пучок света после преломления станет расходящимся (поэтому такие линзы называются рассеивающими ).


Для простоты и удобства, будем рассматривать линзы, толщина которых пренебрежимо мала, по сравнению с радиусами сферических поверхностей. Такие линзы называют тонкими линзами . И в дальнейшем, когда будем говорить о линзе, всегда будем понимать именно тонкую линзу.

Для условного обозначения тонких линз применяют следующий прием: если линза собирающая , то ее обозначают прямой со стрелочками на концах, направленными от центра линзы, а если линза рассеивающая , то стрелочки направлены к центру линзы.

Условное обозначение собирающей линзы


Условное обозначение рассеивающей линзы


(записать)

Оптический центр линзы - это точка, пройдя через которую лучи не испытывают преломления.

Любая прямая, проходящая через оптический центр линзы, называется оптической осью.

Оптическую же ось, которая проходит через центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью.

Точка, в которой пересекаются лучи, падающие на линзу параллельно ее главной оптической оси (или их продолжения), называется главным фокусом линзы . Следует помнить, что у любой линзы существует два главных фокуса - передний и задний, т.к. она преломляет свет, падающий на нее с двух сторон. И оба этих фокуса расположены симметрично относительно оптического центра линзы.

Собирающая линза


(зарисовать)

Рассеивающая линза


(зарисовать)

Расстояние от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием .

Фокальная плоскость - это плоскость, перпендикулярная главной оптической оси линзы, проходящая через ее главный фокус.
Величину, равную обратному фокусному расстоянию линзы, выраженному в метрах, называют оптической силой линзы. Она обозначается большой латинской буквой D и измеряется в диоптриях (сокращенно дптр).


(Записать)


Впервые, полученную нами формулу тонкой линзы, вывел Иоганн Кеплер в 1604 году. Он изучал преломления света при малых углах падения в линзах различной конфигурации.

Линейное увеличение линзы - это отношение линейного размера изображения к линейному размеру предмета. Обозначается оно большой греческой буквой G.


Решение задач (у доски) :

  • Стр 165 упр 33 (1,2)
  • Свеча находится на расстоянии 8 см от собирающей линзы, оптическая сила которой равна 10 дптр. На каком расстоянии от линзы получится изображение и каким оно будет?
  • На каком расстоянии от линзы с фокусным расстоянием 12см надо поместить предмет, чтобы его действительное изображение было втрое больше самого предмета?

Дома: §§ 66 №№1584, 1612-1615 (сборник Лукашика)

Фо́кусное расстоя́ние - физическая характеристика оптической системы. Для центрированной оптической системы, состоящей из сферических поверхностей, описывает способность собирать лучи в одну точку при условии, что эти лучи идут из бесконечности параллельным пучком параллельно оптической оси.

Для системы линз, как и для простой линзы конечной толщины, фокусное расстояние зависит от радиусов кривизны поверхностей, показателей преломления стёкол и толщин.

Определяется как расстояние от передней главной точки до переднего фокуса (для переднего фокусного расстояния), и как расстояние от задней главной точки дозаднего фокуса (для заднего фокусного расстояния). При этом, под главными точками подразумеваются точки пересечения передней (задней) главной плоскости соптической осью.

Величина заднего фокусного расстояния является основным параметром, которым принято характеризовать любую оптическую систему.

Парабола (или параболоид вращения) фокусирует параллельный пучок лучей в одну точку

Фо́кус (от лат. focus - «очаг») оптической (или работающей с другими видами излучения) системы - точка, в которой пересекаются («фокусируются» ) первоначально параллельные лучи после прохождения через собирающую систему (либо где пересекаются их продолжения, если система рассеивающая). Множество фокусов системы определяет её фокальную поверхность. Главный фокус системы является пересечением её главной оптической оси и фокальной поверхности. В настоящее время , вместо термина главный фокус (передний или задний) используются термины задний фокус и передний фокус .

Опти́ческая си́ла - величина, характеризующая преломляющую способность осесимметричных линз и центрированных оптических систем из таких линз. Измеряется оптическая сила в диоптриях (в СИ): 1 дптр=1 м -1 .

Обратно пропорциональна фокусному расстоянию системы:

где - фокусное расстояние линзы.

Оптическая сила положительна у собирающих систем и отрицательна в случае рассеивающих.

Оптическая сила системы, состоящей из двух находящихся в воздухе линз с оптическими силами и, определяется формулой :

где - расстояние между задней главной плоскостью первой линзы и передней главной плоскостью второй линзы. В случае тонких линзсовпадает с расстоянием между линзами.

Обычно оптическая сила используется для характеристики линз, используемых в офтальмологии, в обозначениях очков и для упрощённого геометрического определения траектории луча.

Для измерения оптической силы линз используют диоптриметры , которые позволяют проводить измерения в том числе астигматических и контактных линз.

18. Формула сопряжённых фокусных расстояний. Построение изображения линзой.

Сопряжённое фо́кусное расстоя́ние - расстояние от задней главной плоскости объектива до изображения объекта, когда объект расположен не в бесконечности, а на некотором расстоянии от объектива. Сопряженное фокусное расстояние всегда большефокусного расстояния объектива и тем больше, чем меньше расстояние от объекта допередней главной плоскости объектива . Эта зависимость приведена в таблице, в которой расстоянияивыражены в величинах.

Изменение величины сопряженного фокусного расстояния

Расстояние до объекта R

Расстояние до изображения d

Для линзы эти расстояния связаны отношением, непосредственно следующим из формулы линзы:

или, если d и R выразить в величинах фокусного расстояния :

б) Построение изображения в линзах .

Для построения хода луча в линзе применяются те же законы, что и для вогнутого зеркала. Луч, параллельный оси , проходит через фокус и наоборот. Центральный луч (луч, идущий через оптический центр линзы) проходит через линзу без отклонения ; в толстых

линзах он немного смещается параллельно самому себе (как в плоскопараллельной пластинке, см. рис. 214). Из обратимости хода лучей следует, что каждая линза имеет два фокуса, которые находятся на одинаковых расстояниях от линзы (последнее верно лишь для тонких линз). Для тонких собирающих линз и центральных лучей справедливы следующие законы построения изображений :

g > 2F ; изображение обратное, уменьшенное, действительное, b > F (рис.221).

g = 2F ; изображение обратное, равное, действительное, b = F .

F < g < 2F ; изображение обратное, увеличенное, действительное, b > 2F .

g < F ; изображение прямое, увеличенное, мнимое, - b > F .

При g < F лучи расходятся, на продолжении пересекаются и дают мнимое

изображение. Линза действует как увеличительное стекло (лупа).

Изображения в рассеивающих линзах всегда мнимые, прямые и уменьшенные (рис.223).

Рассмотрим теперь, другой случай, имеющий большое практическое значение. Большинство линз, которыми — мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусировании пучка света из точки О в точку О’. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящимся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О’. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О’. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О». Таким образом можно пройти, если необходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!

Имеются еще более сложные формулы, которые могут нам помочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхностями!

Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей

поверхности и т. д. Часто в системах бывает несколько сортов стекла с разными показателями n 1 , n 2 , … ; поэтому для конкретного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n 1 , n 2 . Нетрудно показать, что обобщенное уравнение (27.3) имеет вид

Особенно прост случай, когда поверхности близки друг к другу и ошибками из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную, на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О’? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n 2) излишек времени на пути ОРО’ будет равен (n 1 h 2 /2s) + (n 1 h 2 /2s’). Чтобы уравнять время на пути ОРО’ и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задерживала свет на нужное время. Поэтому толщина линзы T должна удовлетворять соотношению

Можно еще выразить Т через радиусы обеих поверхностей R 1 и R 2 . Учитывая условие 3 (приведенное на стр. 27), мы находим для случая R 1 < R 2 (выпуклая линза)

Отсюда получаем окончательно

Отметим, что, как и раньше, когда одна точка находится на бесконечности, другая будет расположена на расстоянии, которое мы называем фокусным расстоянием f. Величина f определяется равенством

где n = n 2 /n 1 .

В противоположном случае, когда s стремится к бесконечности, s’ оказывается на фокусном расстоянии f’. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокуси-руются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)

Забудем на время формулу для фокусного. расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния

Давайте посмотрим теперь, как работает эта формула и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s’ бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии f и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s’ одинаковы, то каждое из них равно 2f.