Главная · Паразиты в организме · Качественное определение витамина а. Качественные реакции на витамины. Количественное определение витамина С. Метод определения витамина C в сульфитированных сушеных продуктах

Качественное определение витамина а. Качественные реакции на витамины. Количественное определение витамина С. Метод определения витамина C в сульфитированных сушеных продуктах

Введение……………………………………………………………2

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B 1 B 2 в пищевых продуктах………..13

Заключение………………………………………………………...18

Введение

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556-81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22-80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира - кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина - Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом, кизельгелем

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб, ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

Преимущества метода жидкостной хроматографии:

Одновременное определение нескольких компонентов

Устранение влияния мешающих компонентов

Комплекс можно быстро перестроить на выполнение других анализов.

Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":

Таблица 1

Насос SSI серии III

Насос для подачи элюента имеет низкий уровень пульсаций

Детектор спектрофотометрический СПФ-1

Детектор по измерению поглощения (длинна волны 254 - 455 нм)

Кран-дозатор

Применяется шестипортовый двухходовой петлевой дозатор. Увеличение петли дозирования позволяет увеличить чувствительность анализа.

Насос SSI серии III

Дополнительный насос может быть использован для создания градиента (необязателен)

Колонки хроматографические

Аналитическая колонка Vydac 201SP54 250х4 мм или аналогичная.

Вспомогательное оборудование для лаборатории жидкостной хроматографии

Вакуумный насос для дегазации элюента.

Программа сбора и обработки хроматографической информации "Хромос 2.3."

Работа одного компьютера с несколькими хроматографами (количество зависит от конфигурации компьютера). Методы расчета хроматограмм: абсолютная калибровка, внутренний стандарт.

Компьютер IBM-PC/AT с принтером

Celeron-366 (и выше), 32 Мб RAM. HDD-10G. FDD 1.44 (либо CD-ROM). клавиатура, мышь. монитор 15" SVGA, принтер.

Достоинства хроматографа "Хромос ЖХ-301":

Высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.

Легкий доступ к колонкам обеспечивается конструкцией прибора.

Эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.

Широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.

Хроматограмма анализа водорастворимых витаминов:

1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).

Хроматограмма анализа жирорастворимых витаминов:

1. Витамин А
2. токол
3. y -токоферол
4. a -токоферол (Витамин E)
5. лютеин
6. зеаксантин
7. криптоксантин

8. a -каротин

Несмотря на высокую чувствительность метода ВЭЖХ, высокая стоимость приборов, а также длительность анализа с учетом времени пробоподготовки существенно ограничивает его применение в аналитических лабораториях нашей страны.

Введение……………………………………………………………2

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B 1 B 2 в пищевых продуктах………..13

Заключение………………………………………………………...18

Введение

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556-81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22-80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира - кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина - Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом, кизельгелем

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб, ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

Преимущества метода жидкостной хроматографии:

Одновременное определение нескольких компонентов

Устранение влияния мешающих компонентов

Комплекс можно быстро перестроить на выполнение других анализов.

Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":

Таблица 1

Достоинства хроматографа "Хромос ЖХ-301":

Высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.

Легкий доступ к колонкам обеспечивается конструкцией прибора.

Эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.

Широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.

Хроматограмма анализа водорастворимых витаминов:

1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).
1

В статье представлены результаты экспериментальных исследований по выбору метода и разработке методики количественного определения филлохинона (витамина К1) в растениях. Обосновано преимущество хроматографического метода (обращенно-фазовой ВЭЖХ) перед спектрофотометрическим при определении филлохинона в составе комплекса БАВ растений. В соответствии с рекомендациями Международной конференции по гармонизации технических требований к регистрации лекарственных средств для применения у человека (International Conference Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) была проведена валидация разработанной методики по показателям специфичность, линейность, воспроизводимость и точность. Установлено, что предложенная методика является специфичной, линейной, воспроизводимой и точной. На примере фармакопейных видов сырья, содержащих витамин К1, доказана универсальность применения методики при анализе растительных объектов.

филлохинон

витамин К1

крапивы листья

калины кора

кукурузы столбики с рыльцами

пастушьей сумки трава

валидация

1. Абышев А. З. Синтез, свойства и контроль качества витаминных препаратов и витаминоподобных веществ: учебно-методическое пособие / А. З. Абышев, С.Н. Трусов, Н.И. Котова, М. П. Блинова. – СПб. : Изд-во СПФХА, 2010. – 136 с.

2. ГОСТ Р ИСО 5725-2002 «Точность (правильность и прецизионность) методов и результатов измерений» В 6 ч. – Введ. 23.04.02. – М.: Госстандарт России; Изд-во стандартов, 2002.

3. Государственная фармакопея СССР. Вып. 2 Общие методы анализа. Лекарственное растительное сырье / МЗ СССР. – 11-е изд., доп. – М., 1989. – 400 с.

4. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации МР 2.3.1.2432 -08

5. Носов А. М. Лекарственные растения. – М.: ЭКСМО-Пресс, 1999. – 350 с.

6. Погодин И.С., Лукша Е.А. Разработка методики количественного определения сесквитерпеновых лактонов в траве соссюреи горькой // Современные проблемы науки и образования. – 2013. – № 1; URL: www.сайт/107-8426

Введение

Витамин К относится к классу жирорастворимых витаминов, влияющих на систему гемостаза. К природным витаминам группы К относятся два типа метилированных хиноидных соединений с боковыми цепями, представленными изопреноидными звеньями: витамины К 1 и К 2 . В основе структуры указанных витаминов лежит система 1,4-нафтохинона. Витамин К1 (филлохинон) синтезируется всеми фотосинтезирующими организмами. Витамин К 2 (менахинон) синтезируется микрофлорой толстого кишечника. Биологическая роль витаминов группы К заключается в активации факторов свертывающей и противосвертывающей систем млекопитающих .

В настоящее время определена физиологическая потребность в витамине К для взрослых - 120 мкг/сутки и для детей - от 30 до 75 мкг/сутки .

В медицинской практике препараты растительного происхождения, содержащие филлохинон, используются для коррекции геморрагических осложнений. В Государственную фармакопею 11 издания включены следующие виды лекарственного растительного сырья, обладающие гемостатическим витамин К-зависимым эффектом: кора калины (Соrtex Viburni), столбики с рыльцами кукурузы (Styli cum stigmatis Zeae maydis), листья крапивы (Folia Urticae), трава пастушьей сумки (Herba Bursae pastoris) . Установлено, что витамин К 1 также содержится в траве тысячелистника, горца перечного, горца почечуйного и спорыша, что определяет возможность применения указанного сырья при желудочных, маточных и геморроидальных кровотечениях . В Государственной фармакопее, в настоящее время, отсутствуют методики определения филлохинона в растительном сырье. Для оценки целесообразности использования лекарственного растительного сырья в качестве источников витамина К1, актуальной проблемой является решение вопросов стандартизации и разработки методик, направленных на определение содержания филлохинона в растительных объектах.

Цель работы : разработка методики определения витамина К1 в лекарственном растительном сырье.

Материалы и методы исследования

Объектами исследования являлись официнальные виды лекарственного растительного сырья: кора калины, столбики с рыльцами кукурузы, листья крапивы, трава пастушьей сумки. Все виды сырья были приобретены через аптечные сети. Выбор рационального способа определения витамина К 1 проводили на основании оценки валидационных характеристик, полученных с помощью хроматографических и спектрофотометрических методов анализа. Для разработки методики количественного определения филлохинона в растительном сырье использовали метод обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором на приборе Shimadzu LC-20 Prominence в изократическом режиме в следующих условиях: аналитическая колонка, заполненная сорбентом PerfectSil 300 ODS C18, 4,6х250 мм, с размером частиц 5 мкм; состав подвижной фазы: ацетонитрил-изопропанол-вода в соотношении 75:20:5; детектирование при длине волны 254 нм; температура колонки - комнатная; скорость подвижной фазы 1 мл/мин; объем вводимой пробы 20 мкл. Оценку результатов проводили по величине времени удерживания (t r) филлохинона, совпадающим с показателем t r РСО (20.00±1.00 мин.) и по величине площади пика филлохинона. Обработку результатов производили с использованием программного обеспечения LC Solutions.

Спектрофотометрическое определение содержания витамина К 1 проводили на приборе UNICO 2802S в кварцевой кювете с толщиной слоя 1 см.

Обработку результатов выполняли с использованием программы STATISTICA 8.0. Для описания полученных результатов, после проверки нормальности распределения, приводили значение среднего (X ср), стандартного отклонения (S), относительного стандартного отклонения (RSD), дисперсии (S 2), доверительного интервала среднего (Δx ср) при уровне значимости α=0,05.

В качестве стандартного образца использовали рабочий стандартный образец (РСО) витамина К 1 , выделенного методом препаративной колоночной хроматографии из гексанового извлечения листьев крапивы двудомной. Рабочий стандартный образец представляет собой желтую вязкую невысыхающую маслянистую жидкость, практически не растворимую в воде, растворимую в органических растворителях и растительных маслах, температура плавления -20ºС. Спектральные характеристики спиртового раствора рабочего стандартного образца (после удаления гексана) представлены на рис. 1.

Рис. 1. Спектр в УФ- и видимой области раствора РСО филлохинона (витамина К1)

Для максимального извлечения витамина К1 из исследуемых образцов подбирали следующие параметры пробоподготовки: степень измельченности сырья, вид экстрагента, количественные соотношения сырья и экстрагента, время и кратность экстракции, температурный и световой режим экстрагирования.

Результаты и обсуждение . С целью разработки рационального метода определения содержания витамина К 1 были подобраны условия для его извлечения из сырья. В качестве объекта для разработки методики служили листья крапивы. С учетом неустойчивости филлохинона к воздействию световой энергии, все этапы исследования проводили в условиях, предполагающих защиту извлечений от света. Полноту извлечения определяли методом ВЭЖХ по величине площади пика с t r 20.00±2.00 мин. В результате оценки влияния факторов пробоподготовки на полноту извлечения филлохинона были подобраны следующие параметры и условия: измельченность сырья - частицы, проходящие сквозь сито с величиной диаметра отверстий 0,5 мм; экстрагент - гексан; количественное соотношение «сырье:экстрагент» - 1:25; однократная экспозиция в течение 60 мин.; температурный режим - комнатная температура (20-22ºС).

Для разработки методики определения витамина К 1 в растениях спектрофотометрическим методом, предварительно был проведен сравнительный анализ спектров поглощений извлечений из фармакопейного сырья (рис. 2) и раствора РСО филлохинона (рис. 1). В результате было установлено, что доказать присутствие витамина К1 в сырье по референтному максимуму (249 нм) не представляется возможным, ввиду отсутствия данного максимума в спектре всех исследуемых объектов. Следовательно, методика определения витамина К1 в суммарном комплексе биологически активных веществ растительного сырья прямым спектрофотометрическим методом изначально не может быть положительно провалидирована по показателю «специфичность». Повысить показатель специфичности методики при использовании спектрофотометрии возможно при условии извлечения из сырья очищенного филлохинона, что требует введения дополнительных препаративных манипуляций на стадии пробоподготовки объекта исследования. Дополнительная очистка извлечения может отрицательно повлиять на экспрессность и точность методики в конечном результате.

Рисунок 2 - Спектры поглощения извлечений из лекарственного растительного сырья, содержащего филлохинон (Кр - листья крапивы, К - кора калины, Ку - столбики с рыльцами кукурузы, П - трава пастушьей сумки)

Наиболее приемлемым вариантом для определения витамина К 1 в растительном сырье представляется использование метода обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором. По разработанным параметрам пробоподготовки сырья к анализу была разработана следующая методика: аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 0,5 мм. Около 1,0 г (точная навеска) измельченного сырья помещают в коническую колбу вместимостью 50 мл, заливают 25 мл гексана, закрывают пробкой и перемешивают на механическом встряхивателе в течение 60 минут. Извлечение фильтруют через бумажный фильтр в круглодонную колбу и отгоняют гексан на ротационном испарителе. Остаток количественно переносят в мерную колбу на 5 мл (пикнометр) с помощью 4 мл этанола. Доводят объем раствора до метки тем же растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Приготовление стандартного образца: К 0,0005 г (точная навеска) РСО филлохинона приливают 4 мл этанола, переносят в мерную колбу вместимостью 5 мл. Доводят объем раствора до метки растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Содержание филлохинона (X) в абсолютно сухом сырье в процентах вычисляют по формуле:

где S o - площадь пика на хроматограмме раствора РСО филлохинона; S - площадь пика филлохинона на хроматограмме испытуемого раствора; m o - навеска РСО филлохинона, в г; m - навеска сырья, в г; W - потеря в массе при высушивании сырья, в %; Р - содержание филлохинона в РСО филлохинона, в %.

По результатам количественного определения филлохинона методом обращенно-фазовой ВЭЖХ было определено содержание витамина К1 в листьях крапивы (табл. 1).

Таблица 1 - Метрологическая характеристика метода количественного определения филлохинона в листьях крапивы (%) (n=6)

Xср ± Δхср

0,00425 ± 0,00021

Ввиду малого содержания витамина К1 в сырье предлагаем производить расчеты в мг%, для этого необходимо внести изменения в расчетную формулу для перевода единиц измерения (г в мг):

Валидационную оценку методики проводили по показателям - специфичность, линейность, прецизионность (воспроизводимость) и точность .

Специфичность. Идентификация филлохинона подтверждалась совпадением времени удерживания анализируемого компонента в сырье и РСО филлохинона (рис. 3). Пики сопутствующих соединений, входящих в состав извлечений растительного сырья, хорошо разделяются с пиком филлохинона, и не влияют на аналитическое определение.

Рис. 3. Хроматограмма извлечения листьев крапивы (А - пик 17,tr =20.37 мин соответствует филлохинону) и рабочего стандартного образца филлохинона (Б - пик 22 ,tr =20.71 мин)

Линейность и аналитическая область методики была подтверждена анализом 7 проб разных концентраций в диапазоне от 13 до 417 % от концентрации (0,12 мг/мл), принятой за 100 %. Сравнение зависимости между содержанием филлохинона (мг/мл) в испытуемых растворах и величинами площадей хроматографических пиков показало, что она имеет линейный характер и описывается уравнением y = 5104417,9 x + 10944,88. Коэффициент корреляции (rxy) равен 0,999, что позволяет использовать данную методику для количественного определения филлохинона в растительных объектах в диапазоне концентраций от 0,016 до 0,5 мг/мл.

Воспроизводимость (прецизионность) определялась путем проведения анализа разными (двумя) аналитиками на одной серии сырья в разное время. Число повторностей для каждого аналитика - 3, общее число повторностей - 6. Относительное стандартное отклонение, выраженное в процентах (RSD, %), не должно превышать 5 % . По результатам проведенных исследований RSD составило 1,21 %, что характеризует надежность анализа в выбранных условиях (табл. 2).

Таблица 2 - Результаты определения прецизионности методики

Повторность

Аналитик

Определено в образце, мг%

Метрологические характеристики

Xср = 4,00525 мг %

S = 0,04850 мг %

Для определения точности методики анализировали образцы листьев крапивы из одной партии сырья в 3 уровнях навесок (по 0,5, 1,0 и 1,5 г), трижды проводя отбор проб для каждого уровня. Содержание витамина К1 определяли в мг в навеске сырья. Предварительно рассчитывали ожидаемую (теоретическую) величину, исходя из установленного среднего показателя по содержанию витамина К1 в листьях крапивы, равного 4,1 мг%. Теоретический показатель значения сравнивали с фактическим. Для оценки полученных результатов использовали показатель «открываемость» (R), критерий приемлемости для которого принят в пределах 98-102 % от расчетной величины .

Таблица 3 - Результаты определения точности методики

Навеска сырья,

Фактическое

Расчетное

Открываемость

Метрологические

характеристики

Результаты определения точности методики, представленные в таблице 3, показали, что открываемость R составляет 98,73 %, величина относительного стандартного отклонения (RSD) не превышает 5 %, что характеризует точность методики как удовлетворительную.

Таким образом, установлено, что предлагаемая методика количественного определения витамина К1 методом ВЭЖХ в листьях крапивы является специфичной, воспроизводимой и точной. Данная методика была воспроизведена для определения витамина К1 в других видах лекарственного растительного сырья (табл. 4).

Таблица 4 - Содержание витамина К1 (мг%) в лекарственном растительном сырье

Объект (n=6)

Xср ± Δхср

Столбики с рыльцами кукурузы

Трава пастушьей сумки

Кора калины

Проведенные исследования показали целесообразность использования метода обращенно-фазовой ВЭЖХ для определения филлохинона в растительном сырье. Преимуществом метода ВЭЖХ является возможность проведения оценки качественного и количественного содержания филлохинона в одной навеске сырья, что существенно экономит временные затраты на анализ. Разработанная методика может быть использована для определения содержания витамина К1 в растительных объектах.

Рецензенты:

Гришин А.В. д.фарм.н., профессор, зав. кафедрой фармации ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Пеньевская Н.А. д.м.н., доцент, зав. кафедрой фармацевтической технологии с курсом биотехнологии ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Библиографическая ссылка

Лукша Е.А., Погодин И.С., Калинкина Г.И., Коломиец Н.Э., Величко Г.Н. РАЗРАБОТКА МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФИЛЛОХИНОНА (ВИТАМИНА К1) В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13736 (дата обращения: 02.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Методы количественного определения витаминов основаны на их физико-химических свойствах, таких как окислительно-восстановительные свойства, способность флуоресцировать в УФ-свете. Применяют различные методы определения: титрометрические, фотоколориметрические, спектрофотометрические, флуорометрические и др.

Количественное определение витамина К

Витамин К в листьях крапивы определяют методом СФМ (таблица 3).

Таблица 3 . Количественное определение витамина K в листьях крапивы (авторский метод)

Количественное определение БАВ в плодах шиповника.

Аскорбиновую кислоту можно определять титрометрическим методом, который основан на восстановлении 2,6-дихлорфенолиндофенола. С этим же реактивом можно провести фотоколориметрическое определение аскорбиновой кислоты. Для этого проводят экстракцию сырья 2 % метафосфорной кислотой, добавляют раствор 2,6-дихлорфенолиндофенола. Через 35 сек. проводят фотоколориметрирование. Параллельно колориметрируют контрольный раствор 2 % метафосфорная кислота с 2,6-дихлорфенолиндофенолом. Интенсивность окраски пропорциональна количеству аскорбиновой кислоты.

Количественное определение аскорбиновой кислоты можно провести фотоколориметрическим методом с помощью гексацианоферрита калия. В кислой среде аскорбиновая кислота восстанавливает гексацианоферрит калия до гексацианоферрата калия, который в присутствии ионов железа (Ш) образует берлинскую лазурь, с последующим ее фотоколориметрированием.

Метод количественного определения аскорбиновой кислоты (по ГФ XI, вып. 2, стр. 294) основан на ее способности окисляться до дегидроформы раствором 2,6-дихлорфенолиндофенолята и восстанавливать последний до лейкоформы. Точка эквивалентности устанавливается появлением розового окрашивания, которое свидетельствует об отсутствии восстановителя, т. е кислоты аскорбиновой (2,6-дихлорфенолиндофенол имеет в щелочной среде синее окрашивание, в кислой - красное, а при восстановлении обесцвечивается):



1. Определение содержания аскорбиновой кислоты. (таблица 4). Из грубо измельченной аналитической пробы плодов берут навеску массой 20 г, помещают в фарфоровую ступку, где тщательно растирают со стеклянным порошком (около 5 г), постепенно добавляя 300 мл воды, и настаивают 10 мин. Затем смесь размешивают и извлечение фильтруют. В коническую колбу вместимостью 100 мл вносят 1 мл полученного фильтрата, 1 мл 2%раствора хлористоводородной кислоты, 13 мл воды, перемешивают и титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л) до появления розовой окраски, не исчезающей в течение 30-60 с. Титрование продолжают не более 2 мин. В случае интенсивного окрашивания фильтрата или высокого содержания в нем аскорбиновой кислоты [расход раствора 2,6-дихлорфенолиндофенолятанатрия (0,001 моль/л) более 2 мл], обнаруженного пробным титрованием, исходное извлечение разбавляют водой в 2 раза или более.

где 0,000088 - количество аскорбиновой кислоты, соответствующее 1мл раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), в граммах; V - объем раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Примечания . Приготовление раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л): 0,22 г 2,6-дихлорфенолиндофенолята натрия растворяют в 500 мл свежепрокипяченной и охлажденной воды при энергичном взбалтывании (для растворения навески раствор оставляют на ночь). Раствор фильтруют в мерную колбу вместимостью 1 л и доводят объем раствора водой до метки. Срок годности раствора не более 7 сут при условии хранения в холодном, темном месте.

Установка титра. Несколько кристаллов (3-5) аскорбиновой кислоты растворяют в 50 мл 2 % раствора серной кислоты; 5 мл полученного раствора титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия до появления розового окрашивания, исчезающего в течение 1-2 нед. Другие 5 мл этого же раствора аскорбиновой кислоты титруют раствором калия йодата (0,001 моль/л) в присутствии нескольких кристаллов (около 2 мг) калия йодида и 2-3 капель раствора крахмала до появления голубого окрашивания. Поправочный коэффициент вычисляют по формуле:

где V - объем раствора калий йодата (0,001 моль/л), пошедшего на титрование, в миллилитрах; V1-объем раствора 2,6-дихлорфенолиндофенолята натрия, пошедшего на титрование, в миллилитрах.

2. Определение содержания свободных органических кислот. Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. 25 г измельченных плодов шиповника помещают в колбу вместимостью 250 мл, заливают 200 мл воды и выдерживают в течение 2 ч на кипящей водяной бане, затем охлаждают, количественно переносят в мерную колбу вместимостью 250 мл, доводят объем извлечения водой до метки перемешивают. Отбирают 10 мл извлечения, помещают в колбу вместимостью 500 мл, прибавляют 200-300 мл свеже-прокипяченной воды, 1 мл 1% спиртового раствора фенолфталеина, 2 мл 0,1 % раствора метиленового синего и титруют раствором натра едкого (0,1 моль/л) до появления в пене лилово- красной окраски.

где 0,0067-количество яблочной кислоты, соответствующее 1 мл раствора натра едкого (0,1 моль/л), в граммах; V - объем раствора натра едкого (0,1 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Таблица 4. Количественное определение аскорбиновой кислоты в плодах шиповника (фармакопейный метод)

Количественное определение химических веществ в цветках календулы.

Каротиноиды определяют в лекарственном сырье фотоколориметрическим методом, основанном на измерении интенсивности их природной окраски. Разработан спектрофотометрический метод определения каротиноидов. Каротиноиды из сырья экстрагируют петролейным эфиром, затем хроматографируют на пластинке "Силуфол" в системе петролейный эфир-бензол-метанол (60:15:4), элюируют хлороформом и спектрофотометрируют при длине волны 464 нм (-каротин) при 456 нм (в-каротин).

  • 1. Около 1 г (точная навеска) измельченных цветков ноготков, просеянных сквозь сито с отверстиями размером 1 мм, помещают в коническую колбу вместимостью 250 мл, прибавляют 50 мл спирта 70 %, колбу закрывают пробкой, взвешивают (с погрешностью ± 0,01 г) и оставляют на 1 ч. Затем колбу соединяют с обратным холодильником, нагревают, поддерживая слабое кипение в течение 2 ч. После охлаждения колбу с содержимым вновь закрывают той же пробкой, взвешивают и потерю в массе восполняют растворителем. Содержимое колбы тщательно взбалтывают и фильтруют через сухой бумажный фильтр, отбрасывая первые 20 мл, в сухую колбу вместимостью 200 мл (раствор А).
  • 1 мл раствора А помещают в мерную колбу вместимостью 25 мл, прибавляют 5 мл раствора алюминия хлорида, 0,1 мл кислоты уксусной и доводят объем раствора спиртом 96 % до метки и оставляют на 40 минут (раствор Б).

Через 40 минут измеряют оптическую плотность испытуемого раствора Б и раствора стандартного образца Б 1 на спектрофотометре в максимуме поглощения при длине волны (408 + 2) нм в кювете с толщиной слоя 10 мм, используя растворы сравнения для испытуемого раствора и стандартного образцов.

где: А - оптическая плотность испытуемого раствора;

А о - оптическая плотность раствора стандартного образца рутина;

а - навеска сырья, г;

а о - навеска стандартного образца рутина, г;

W - влажность сырья, %;

Допускается проводить определение содержания суммы флавоноидов с использованием удельного показателя поглощения рутина.