Главная · Паразиты в организме · Чему равносильно неравенство с параметром x a. Учебное пособие "уравнения и неравенства с параметрами"

Чему равносильно неравенство с параметром x a. Учебное пособие "уравнения и неравенства с параметрами"

Многие задачи с параметром сводятся к исследованию квадратного трёхчлена, поэтому рассмотрим эти задачи подробнее.

I. При решении простейших задач бывает достаточно формулы для корней квадратного уравнения и теоремы Виета.

При каких значениях параметра a a множество решений неравенства $$x^2+ax-1

Поскольку коэффициент при x 2 x^2 положителен, решением неравенства является интервал между корнями в случае $$D > 0$$ и пустое множество, если D ≤ 0 D \leq 0 .

Находим дискриминант: D = a 2 + 4 D = a^2+4 ($$D>0$$ при всех a a). Тогда множество решений есть промежуток

x ∈ (- a - a 2 + 4 2 ; - a + a 2 + 4 2) x \in (\dfrac{-a-\sqrt{a^2+4}}{2}; \dfrac{-a+\sqrt{a^2+4}}{2}) . Требуется, чтобы длина этого промежутка была равна 5, т. е.

A + a 2 + 4 2 = - a - a 2 + 4 2 + 5 ⇔ a 2 + 4 = 5 ⇔ a = ± 21 \dfrac{-a+\sqrt{a^2+4}}{2} = \dfrac{-a-\sqrt{a^2+4}}{2} + 5 \Leftrightarrow \sqrt{a^2+4}=5 \Leftrightarrow a = \pm \sqrt{21} .

ОТВЕТ

A = ± 21 a = \pm \sqrt{21}

При каких значениях параметра p p уравнение x 2 + p 2 + 4 p · x + p - 1 x^2+\sqrt{p^2+4p}\cdot x +p-1 имеет корни, а сумма квадратов корней минимальна?

Сумму квадратов корней уравнения удобно выразить с помощью теоремы Виета:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = (- p 2 + 4 p) 2 - 2 (p - 1) = p 2 + 2 p + 2 x_1^2+x_2^2 = (x_1+x_2)^2-2x_1x_2=(-\sqrt{p^2+4p})^2-2(p-1) = p^2 +2p + 2 .

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант: D = p 2 + 4 p - 4 (p - 1) = p 2 + 4 D = p^2+4p-4(p-1) = p^2+4 . Видим, что дискриминант положителен при любых допустимых значениях p p , т. е. при

p ∈ (- ∞ ; - 4 ] ∪ [ 0 ; + ∞)                           (5) p \in (-\infty; -4]\bigcup и пр.), в которых надо самостоятельно нарисовать чертёж и сделать соответствующие выводы.

Замечания. 1. Для уравнений и неравенств вида

$$ax^2 + bx + c = 0,\: ax^2 + bx + c > 0, \: ax^2 + bx + c надо отдельно рассматривать случай a = 0 a =0 . Тогда получится линейное уравнение (неравенство).

2. В большинстве задач важно учесть знак числа a a - от этого зависит направление ветвей параболы.

3. Заметим, что совокупность двух систем

$$\begin{cases} a > 0, \\ f(a) > 0 \end{cases} и \begin{cases} a

равносильна неравенству $$a f(a) > 0$$. Поэтому в условии 1 ° 1^{\circ} можно записать одну систему $$\begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}}

Аналогично можно упростить и другие условия:

$$2^{\circ} \Leftrightarrow \begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}} > A .\end{cases} \:\:\: 3^{\circ} \Leftrightarrow a f(A) 0, \\ a f(A) > 0, \\ a f(B) > 0, \\ A

Перейдём к примерам.

При каких a a уравнение (2 a - 2) x 2 + (a + 1) x + 1 = 0 (2a-2)x^2 + (a+1)x +1 = 0 имеет корни, и все они принадлежат интервалу (- 2 ; 0) (-2; 0) ?

1) Если 2 a - 2 = 0   (a = 1) 2a-2=0\:(a=1) , то уравнение принимает вид 2 x + 1 = 0 2x+1=0 . Это уравнение имеет единственный корень x = - 0,5 x=-0,5 , который принадлежит интервалу (- 2 ; 0) (-2; 0) . Значит, a = 1 a =1 удовлетворяет условию задачи.

2) Если 2 a - 2 ≠ 0 2a-2 \neq 0 , то уравнение квадратное. Находим дискриминант:

D = (a + 1) 2 - 4 (2 a - 2) = a 2 - 6 a + 9 = (a - 3) 2 D=(a+1)^2-4(2a-2)=a^2-6a+9=(a-3)^2 .

Поскольку дискриминант является полным квадратом, находим корни(как правило, вышеописанные приёмы с расположением корней удобно использовать, если формулы для корней громоздкие. Если дискриминант является полным квадратом и корни получаются “хорошими”, то проще решить задачу напрямую):

Для выполнения условий задачи требуется, чтобы выполнялось неравенство $$-2 \dfrac{3}{2}$$.

ОТВЕТ

A ∈ { 1 } ∪ (3 2 ; + ∞) a \in \{1\}\bigcup (\dfrac{3}{2}; +\infty) .

При каких значениях a a неравенство $$4^{\textrm{sin}\:x}-2\cdot (a-3) \cdot 2^{\textrm{sin}\:x} + a+3 > 0$$ выполняется для всех x x ?

Обозначим 2 sin   x = y 2^{\textrm{sin}\:x}=y . Поскольку - 1 ≤ sin   x ≤ 1 -1 \leq \textrm{sin}\:x \leq 1 , получаем, что 1 2 ≤ 2 sin   x ≤ 2 \dfrac{1}{2} \leq 2^{\textrm{sin}\:x} \leq 2 . Исходное неравенство принимает вид

$$y^2-2(a-3)y+(a+3) > 0$$

Данная задача эквивалентна следующей: «при каких a a неравенство $$y^2-2(a-3)y+(a+3) > 0$$ выполнено для всех y ∈ [ 1 2 ; 2 ] y \in [\dfrac{1}{2};2] ?»

График левой части этого неравенства - парабола с ветвями вверх. Требования задачи будут выполнены в двух случаях. 1) $$D

а) Это расположение параболы (корни находятся слева от отрезка [ 1 2 ; 2 ] [\dfrac{1}{2};2]) задаётся условиями (записываем и решаем систему):

$$\begin{cases} D \geq 0,\\ x_{\text{в}} 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 0 \end{cases} \Leftrightarrow \begin{cases} a \in (-\infty;1]\bigcup]6;+\infty),\\ a 0 \end{cases} \Leftrightarrow a \leq 1 $$.

б) Этот случай задаётся условием $$D

в) Аналогично случаю а) получаем систему:

$$\!\!\!\! \begin{cases} D \geq 0,\\ x_{\text{в}} > 2,\\ f(2) > 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 > 2,\\ 4 - 4(a-3) +a+3 > 0 \end{cases} \Leftrightarrow \begin{cases} a\in (-\infty; 1]\bigcup ?

1) Рассматриваем случай a = 0 a = 0 (тогда уравнение не квадратное). Уравнение принимает вид - 5 x - 6 = 0 -5x-6=0 . Корней на отрезке [ 0 ; 2 ] нет, поэтому a = 0 a = 0 не подходит.

2) Уравнение квадратное. Обозначим левую часть уравнения через f (x) f(x) . Уравнение имеет на отрезке [ 0 ; 2 ] ровно один корень в двух случаях.

А) Уравнение имеет единственный корень, и он принадлежит отрезку [ 0 ; 2 ] . Это возможно при D = 0 D = 0 . Вычисляем дискриминант:

D = (2 a - 5) 2 - 4 a (a - 6) = 4 a + 25 D = (2a-5)^2-4a(a-6) = 4a+25 .

Дискриминант обращается в ноль при a = - 25 4 a=-\dfrac{25}{4} . При этом исходное уравнение принимает вид - 25 4 x 2 - 35 2 x - 49 4 = 0 -\dfrac{25}{4}x^2-\dfrac{35}{2}x - \dfrac{49}{4} = 0 , откуда x = - 7 5 x = -\dfrac{7}{5} . Корней на отрезке [ 0 ; 2 ] нет, значит, этот случай не реализуется ни при каких значениях параметра a a .

Б) Уравнение имеет два корня ($$D>0 \Leftrightarrow a>-\dfrac{25}{4}$$), один из которых принадлежит отрезку [ 0 ; 2 ] , а другой - нет. Для выполнения этого условия необходимо и достаточно, чтобы либо (а) функция f (x) f(x) принимала на концах отрезка [ 0 ; 2 ] значения разных знаков - тогда корень лежит в интервале (0 ; 2) (0;2) (в качестве примера(можете самостоятельно рассмотреть и другие возможные расположения параболы) см. рис. 7), либо (б) в одном из концов отрезка обращалась в ноль - тогда корень лежит на одном из концов отрезка.

(а) Условие “числа f (0) f(0) и f (2) f(2) имеют разные знаки” равносильно неравенству $$f(0)\cdot f(2)

$$\left(a-6\right)\left(4a+2\left(2a-5\right)+\left(a-6\right)\right)

(б) Если f (0) = 0 f(0) = 0 , то a = 6 a=6 . Тогда уравнение принимает вид 6 x 2 + 7 x = 0 6x^2+7x=0 . Его корнями являются числа x = 0 x=0 и x = - 7 6 x=-\dfrac{7}{6} , т. е. на отрезке [ 0 ; 2 ] оно имеет ровно один корень.

Если f (2) = 0 f(2) = 0 , то a = 16 9 a=\dfrac{16}{9} . Тогда получаем 16 9 x 2 - 13 9 x - 38 9 = 0 \dfrac{16}{9}x^2 - \dfrac{13}{9}x - \dfrac{38}{9} = 0 , откуда x = 2 x=2 или x = - 19 16 x=-\dfrac{19}{16} , т. е. опять из двух корней только один принадлежит отрезку [ 0 ; 2 ] .

Значит, оба значения a = 6 a=6 и a = 16 9 a=\dfrac{16}{9} и удовлетворяют условию задачи(при f (2) = 0 f(2) = 0 или f (0) = 0 f(0) = 0 обязательно надо найти второй корень и посмотреть, находится ли он на отрезке [ 0 ; 2 ] ).

Объединяя результаты, получаем a ∈ [ 16 9 ; 6 ] a\in [\dfrac{16}{9}; 6] .

ОТВЕТ

16 9 ≤ a ≤ 6 \dfrac{16}{9} \leq a \leq 6

При каких значениях параметра a a уравнение | x 2 - 4 | x | + 3 | = a |x^2-4|x|+3| = a имеет ровно 8 решений?

Изобразим графики левой и правой частей на плоскости xOy.

Чтобы построить график левой части, сначала изображаем параболу y = x 2 - 4 x + 3 y = x^2-4x+3 . Затем отражаем все точки этой параболы, лежащие ниже оси абсцисс, относительно этой оси и получаем график функции y = | x 2 - 4 x + 3 | y=|x^2-4x+3| (рис. 8а). Далее отбрасываем все точки, лежащие слева от оси абсцисс, а оставшиеся точки отражаем относительно этой оси - получаем график функции y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| .

График правой части - это горизонтальная прямая y = a y=a . Уравнение имеет 8 решений, когда эта прямая пересекает график y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| в восьми точках. Несложно видеть, что это происходит при $$0ОТВЕТ

A ∈ (0 ; 1) a\in (0;1)

Найдите все значения параметра p p , при которых уравнение 4 x + 2 x + 2 + 7 = p - 4 - x - 2 · 2 1 - x 4^x+2^{x+2}+7=p-4^{-x}-2\cdot 2^{1-x} имеет хотя бы одно решение.

Перепишем уравнение в виде (4 x + 4 - x) + 4 · (2 x + 2 - x) = p - 7 (4^x+4^{-x})+4\cdot (2^x+2^{-x})=p-7 и сделаем замену 2 x + 2 - x = t 2^x+2^{-x}=t . Возводя обе части последнего равенства в квадрат, получаем, что t 2 = (2 x + 2 - x) 2 = 4 x + 2 + 4 - x t^2=(2^x+2^{-x})^2=4^x+2+4^{-x} , откуда 4 x + 4 - x = t 2 - 2 4^x+4^{-x} = t^2-2 . Уравнение принимает вид t 2 - 2 + 4 t = p - 7 ⇔ (t + 2) 2 = p - 1 t^2-2+4t = p-7 \Leftrightarrow (t+2)^2 = p-1 .

Найдём множество значений левой части уравнения. Поскольку(используем, что сумма двух взаимно обратных положительных чисел не меньше двух: a + 1 a ≥ 2 a+\dfrac{1}{a} \geq 2 при $$a>0$$ 0 (равенство возможно только при a = 1 a = 1). Это можно доказать, например, с помощью неравенства Коши: для положительных чисел среднее арифметическое не меньше среднего геометрического (a 1 + a 2 + . . . + a k k ≥ a 1 · a 2 · . . · a k k) (\dfrac{a_1+a_2+...+a_k}{k} \geq \sqrt[k]{a_1\cdot a_2\cdot .. \cdot a_k}) , причём равенство достигается только в случае a 1 = a 2 = . . . = a k a_1=a_2=...=a_k . Для двух положительных чисел это неравенство принимает вид a + b 2 ≥ a b \dfrac{a+b}{2} \geq \sqrt{ab} . Если сюда подставить b = 1 a b = \dfrac{1}{a} , то получится требуемое неравенство.) t ≥ 2 t \geq 2 , получаем, что левая часть уравнения принимает значения из промежутка [ 16 ; + ∞) .

Решение. Преобразуем левую часть данного неравенства следующим образом:

(2-x)а 2 + (x 2 -2x+3)а-3х=ах 2 - а 2 х - 2ах + 2а 2 + 3а - 3x =

Ах (х - а)-2а(х - а)- 3(х-а) = (x - а)(аx- 2а - 3).

Данное неравенство примет вид: (x - а) (аx - 2а - 3) ≥ 0.

Если а = 0, получаем - Зх ≥ 0 x ≤ 0.

Если а ≠ 0, то -3 а

Так как а 0, то решением этого неравенства будет промежуток числовой оси, расположенный между корнями соответствующего неравенству уравнения.

Выясним взаимное расположение чисел а и , учитывая при этом условие - 3 ≤ а

3 ≤a

A = -1.

Представим во всех рассмотренных случаях решения данного неравенства в зависимости от значений параметра:

Получим, что только х = -1 является решением данного неравенства при любом значении параметра а .

Ответ: -1

  1. Заключение.

Почему мной был выбран проект по теме «Разработка методических рекомендаций решения квадратных уравнений и неравенств с параметрами»? Так как при решении любых тригонометрических, показательных, логарифмических уравнений, неравенств, систем мы чаще всего приходим к рассмотрению иногда линейных, а чаще всего квадратных уравнений и неравенств. При решении сложнейших задач с параметрами большинство заданий сводится с помощью равносильных преобразований к выбору решений типа: а (х – а) (х – с) > 0 (

Мы рассмотрели теоретические основы для решения квадратных уравнений и неравенств с параметрами. Вспомнили необходимые формулы и преобразования, рассмотрели различные расположения графиков квадратичной функции в зависимости от значения дискриминанта, от знака при старшем коэффициенте, от расположения корней, вершины параболы. Выявили схему решения и выбора результатов, составили таблицу.

В проекте показаны аналитические и графические методы решения квадратных уравнений и неравенств. Обучающимся в профессиональном училище необходимо зрительное восприятие материала для лучшего усвоения материала. Показано, как можно поменять переменную х и принять параметр как равноправную величину.

Для наглядного усвоения данной темы рассмотрено решение 8 задач с параметрами, по 1 – 2 для каждого раздела. В примере № 1 рассмотрено количество решений при различных значениях параметра, в примере № 3 проводится разбор решения квадратного уравнения при самых различных начальных условиях. Для решения квадратных неравенств сделана графическая иллюстрация. В примере № 5 применяется метод замены параметра как равноправной величины. В проект включено рассмотрение примера № 8 из заданий, включенных в раздел С, для интенсивной подготовки к сдаче ЕГЭ.

Для качественной подготовки обучающихся решению задач с параметрами рекомендуется в полном объеме использовать мультимедийные технологии, а именно: использовать для лекций презентации, электронные учебники и книги, собственные разработки из медиатеки. Очень эффективны бинарные уроки математика + информатика. Незаменимым помощником преподавателю и учащемуся является Интернет. В презентации необходимы импортированные объекты из существующих образовательных ресурсов. Наиболее удобным и приемлемым в работе является ЦОР «Использование Microsoft Office в школе».

Разработка методических рекомендаций по данной тематике облегчит работу молодых преподавателей, пришедших работать в училище, пополнит портфолио преподавателя, послужит образцом для специальных предметов, образцы решений помогут обучающимся справиться со сложными заданиями.

  1. Литература.

1.Горнштейн П.И., Полонский В.Б., ЯкирМ.С. Задачи с параметрами. «Илекса», «Гимназия», Москва – Харьков, 2002.

2.Балаян Э.Н. Сборник задач по математике для подготовки к ЕГЭ и олимпиадам. 9-11 классы. «Феникс», Ростов-на Дону, 2010.

3.Ястребинецкий Г.А. Задачи с параметрами. М., «Просвещение», 1986.

4.Колесникова С.И. Математика. Решение сложных задач Единого государственного экзамена. М. «АЙРИС – пресс», 2005.

5.Родионов Е.М., Синякова С.Л. Математика. Пособие для поступающих в вузы. Учебный центр «Ориентир» МГТУ им. Н.Э. Баумана, М., 2004.

6. Сканави М.И. Сборник задач по математике для поступающих в вузы: В 2 кн. Кн.1, М., 2009.



Приложение

Решение неравенств онлайн на Math24.biz для закрепления студентами и школьниками пройденного материала. И тренировки своих практических навыков. Неравенство в математике - утверждение об относительной величине или порядке двух объектов (один из объектов меньше или не больше другого), или о том, что два объекта не одинаковы (отрицание равенства). В элементарной математике изучают числовые неравенства, в общей алгебре, анализе, геометрии рассматриваются неравенства также и между объектами нечисловой природы. Для решения неравенства обязательно должны быть определены обе его части с одним из знаков неравенства между ними. Строгие неравенства подразумевают неравенство двух объектов. В отличие от строгих, нестрогие неравенства допускают равенство входящих в него объектов. Линейные неравенства представляют собой простейшие с точки зрения начала изучения выражения, и для решения таких неравенств используются самые простые методики. Главная ошибка учеников в решении неравенств онлайн в том, что они не различают особенность строгого и нестрогого неравенства, от чего зависит войдут или нет граничные значения в конечный ответ. Несколько неравенств, связанных между собой несколькими неизвестными, называют системой неравенств. Решением неравенств из системы является некая область на плоскости, либо объемная фигура в трехмерном пространстве. Наряду с этим абстрагируются n-мерными пространствами, однако при решении таких неравенств зачастую не обойтись без специальных вычислительных машин. Для каждого неравенства в отдельности нужно найти значения неизвестного на границах области решения. Множество всех решений неравенства и является его ответом. Замена одного неравенства равносильным ему другим неравенством называется равносильным переходом от одного неравенства к другому. Аналогичный подход встречается и в других дисциплинах, потому что помогает привести выражения к стандартному виду. Вы оцените по достоинству все преимущества решение неравенств онлайн на нашем сайте. Неравенство - это выражение, содержащее один из знаков = >. По сути это логическое выражение. Оно может быть либо верным, либо нет - в зависимости от того, что стоит справа и слева в этом неравенстве. Разъяснение смысла неравенства и основные приемы решения неравенств изучаются на разных курсах, а также в школе. Решение любых неравенств онлайн - неравенства с модулем, алгебраические, тригонометрические, трансцендентные неравенства онлайн. Тождественное неравенство, как строгие и нестрогие неравенства, упрощают процесс достижения конечного результата, являются вспомогательным инструментом для разрешения поставленной задачи. Решение любых неравенств и систем неравенств, будь то логарифмические, показательные, тригонометрические или квадратных неравенства, обеспечивается с помощью изначально правильного подхода к этому важному процессу. Решение неравенств онлайн на сайте сайт всегда доступно всем пользователям и абсолютно бесплатно. Решениями неравенства с одной переменной называются значения переменной, которые обращают его в верное числовое выражение. Уравнения и неравенства с модулем: модуль действительного числа - это абсолютная величина этого числа. Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень. Неравенства – это выражения, указывающие на сравнение чисел, поэтому грамотное решение неравенств обеспечивает точность таких сравнений. Они бывают строгими (больше, меньше) и нестрогими (больше или равно, меньше или равно). Решить неравенство – значит найти все те значения переменных, которые при подстановке в исходное выражение обращают его в верное числовое представление.. Понятие неравенства, его сущность и особенности, классификация и разновидности - вот что определяет специфику данного математического раздела. Основные свойства числовых неравенств, применимые ко всем объектам данного класса, обязательно должны быть изучены учениками на начальном этапе ознакомления с данной темой. Неравенства и промежутки числовой прямой очень тесно связаны, когда речь идет о решении неравенств онлайн. Графическое обозначение решения неравенства наглядно показывает суть такого выражения, становится понятно к чему следует стремиться при решении какой-либо поставленной задачи. В основу понятия неравенства входит сравнение двух или нескольких объектов. Неравенства, содержащие переменную, решаются как аналогично составленные уравнения, после чего делается выборка интервалов, которые будут приняты за ответ. Любое алгебраическое неравенство, тригонометрическое неравенство или неравенства содержащие трансцендентные функции, вы с легкостью и мгновенно сможете решить, используя наш бесплатный сервис. Число является решением неравенства, если при подстановке этого числа вместо переменной получаем верное выражение, то есть знак неравенства показывает истинное понятие.. Решение неравенств онлайн на сайт каждый день для полноценного изучения студентами пройденного материала и закрепления своих практических навыков. Зачастую тема неравенства онлайн в математике изучается школьниками после прохождения раздела уравнений. Как и положено применяются все принципы при решении, чтобы определить интервалы решений. Найти в аналитическом виде ответ бывает сложнее, чем сделать то же самое, но в числовом виде. Однако такой подход дает более наглядное и полное представление об целостности решения неравенства. Сложность может возникнуть на этапе построения линии абсцисс и нанесения точек решения однотипного уравнения. После этого решение неравенств сводится к определению знака функции на каждом выявленном интервале с целью определения возрастания или убывания функции. Для этого необходимо поочередно подставлять к значениям, заключенных внутри каждого интервала, в исходную функцию и проверять её значение на положительность или отрицательность. В этом есть суть нахождения всех решений, в том числе интервалов решений. Когда вы сами решите неравенство и увидите все интервалы с решениями, то поймете, насколько применим такой подход для дальнейших действий. Сайт сайт предлагает вам перепроверить свои результаты вычислений с помощью мощного современного калькулятора на этой странице. Вы сможете с легкостью выявить неточности и недочеты в своих расчетах, использую уникальный решебник неравенств. Студенты часто задаются вопросом, где найти такой полезный ресурс? Благодаря инновационному подходу к возможности определения потребностей инженеров, калькулятор создан на базе мощных вычислительных серверов с использованием только новых технологий. По сути решение неравенств онлайн заключается в решении уравнения с вычислением всех возможных корней. Полученные решения отмечаются на прямой, а далее производится стандартная операция по определению значения функции на каждом промежутке. А что же делать, если корни уравнения получаются комплексные, как в этом случае решить неравенство в полной форме, которое бы удовлетворяло всем правилам написания результата? Ответ на этот и многие другие вопросы с легкость даст наш сервис сайт, для которого нет ничего невозможного в решении математических задач онлайн. В пользу вышесказанного добавим следующее: каждый, кто всерьез занимается изучением такой дисциплиной как математика, обязан изучить тему неравенств. Неравенства бывают разных типов и решить неравенство онлайн порой сделать непросто, так как необходимо знать принципы подходов к каждому из них. На этом базируется основа успеха и стабильности. Для примера можно рассмотреть такие типы, как логарифмические неравенства или трансцендентные неравенства. Это вообще особый вид таких, сложных на первый взгляд, задач для студентов, тем более для школьников. Преподаватели институтов уделяют немало времени из подготовки практикантов для достижения профессиональных навыков в работе. К таким же типам отнесем тригонометрические неравенства и обозначим общий подход при решении множества практических примеров из постановочной задачи. В ряде случаев сначала нужно привести все к уравнению, упростить его, разложить на разные множители, короче говоря, привести к вполне наглядному виду. Во все времена человечество стремилось найти оптимальный подход в любых начинаниях. Благодаря современным технологиям, человечество сделало просто огромный прорыв в будущее свое развитие. Инновации все чаще и чаще, день за днем вливаются в нашу жизнь. В основу вычислительной техники легла, разумеется, математика со своим принципами и строгим подходом к делу. сайт представляет собой общий математический ресурс, в котором имеется разработанный калькулятор неравенств и многие другие полезные сервисы. Используйте наш сайт и у вас будет уверенность в правильности решенных задач. Из теории известно, что объекты нечисловой природы также изучаются неравенствами онлайн, только этот подход представляет собой особый способ изучения данного раздела в алгебре, геометрии и других направлениях математики. Решать неравенства можно по-разному, неизменным остается конечная проверка решений и лучше всего это делать прямой подстановкой значений в само неравенство. Во многих случаях полученный ответ очевиден и его легко проверить в уме. Предположим нам задано решить дробное неравенство, в котором присутствуют искомые переменные в знаменателях дробных выражений. Тогда решение неравенств сведется к приведению всех слагаемых к общему знаменателю, предварительно переместив все в левую и правую часть неравенства. Далее нужно решить однородное уравнение, полученное в знаменателе дроби. Эти числовые корни будут точками, не включенными в интервалы общего решения неравенства, или ка их еще называют - проколотые точки, в которых функция обращается в бесконечность, то есть функция не определена, а можно только получить ее предельное значение в данной точке. Решив полученное в числителе уравнение, все точки нанесем на числовую ось. Заштрихуем те точки, в которых числитель дроби обращаемся в ноль. Соответственно все остальные точки оставляем пустыми или проколотыми. Найдем знак дроби на каждом интервале и после этого выпишем окончательный ответ. Если на границах интервала будут заштрихованные точки, то тогда включаем эти значения в решение. Если на границах интервала будут проколотые точки - эти значения в решение не включаем. После того, как решите неравенство, вам потребуется в обязательном порядке проверить полученный результат. Можно это сделать руками, каждое значение из интервалов ответа поочередно подставить в начальное выражение и выявить ошибки. Сайт сайт с легкостью выдаст вам все решения неравенства, и вы сразу сравните полученные вами и калькулятором ответы. Если все-таки ошибка будет иметь место, то на нашем ресурсе решение неравенств онлайн окажется вам очень полезным. Рекомендуем всем студентам вначале приступать не к решению напрямую неравенства, а сначала получить результат на сайт, потому что в дальнейшем будет намного проще самому сделать правильный расчет. В текстовых задачах практически всегда решение сводится к составлению системы неравенств с несколькими неизвестными. Решить неравенство онлайн в считанные секунды поможет наш ресурс. При этом решение будет произведено мощной вычислительной программой с высокой точностью и без всяких погрешностей в конечном ответе. Тем самым вы сможете сэкономить колоссальное количество времени на решении данным калькулятором примеров. В ряде случаев школьники испытывают затруднения, когда на практике или в лабораторных работах встречают логарифмические неравенства, а еще хуже, когда видят перед собой тригонометрические неравенства со сложными дробными выражениями с синусами, косинусами или вообще с обратными тригонометрическими функциями. Как ни крути, но без помощи калькулятора неравенств справиться будет очень сложно и не исключены ошибки на любом этапе решения задачи. Пользуйтесь ресурсом сайт совершенно бесплатно, он доступен каждому пользователю каждый день. Начинать действовать с нашего сервиса-помощника очень хорошая идея, поскольку аналогов существует множество, а по-настоящему качественных сервисов единицы. Мы гарантируем точность вычислений при длительности поиска ответа в несколько секунд. От вас требуется только записать неравенства онлайн, а мы в свою очередь сразу предоставим вам точный результат решения неравенства. Искать подобный ресурс может оказаться бессмысленным занятием, так как вряд ли вы встретите такой же качественный сервис как у нас. Можно обойтись без теории про решение неравенств онлайн, но без качественного и быстрого калькулятора вам не обойтись. Желаем вам успехов в учебе! По-настоящему выбрать оптимальное решение неравенства онлайн зачастую связано с логическим подходом для случайной величины. Если пренебречь малым отклонением замкнутого поля, то вектор нарастающего значения пропорционален наименьшему значению на промежутке убывания линии ординат. Инвариант пропорционален двукратному увеличению отображаемым функциям наряду с исходящим ненулевым вектором. Лучший ответ всегда содержит точность вычислений. Наше решение неравенств примет вид однородной функции последовательно сопряженных числовых подмножеств главного направления. За первый интервал возьмем как раз наихудшее по точности значение нашего представления переменной. Вычислим на максимальное отклонение предыдущее выражение. Будем пользоваться сервисом на усмотрение предложенных вариантов по мере необходимости. Будет ли найдено решение неравенств онлайн с помощью хорошего в своем классе калькулятора - это риторический вопрос, разумеется, студентам такой инструмент пойдет только на пользу и принесет огромный успех в математике. Наложим ограничение на область с множеством, которое сведем к элементам с восприятием импульсов по напряжению. Физические значения таких экстремумов математически описывают возрастание и убывание кусочно-непрерывных функций. На протяжении всего пути ученые находили доказательства существования элементов на разных уровнях изучения. Расположим все последовательно идущие подмножества одного комплексного пространства в один ряд с такими объектами, как шар, куб или цилиндр. Из нашего результата можно сделать однозначный вывод и когда решите неравенство, то на выходе, безусловно, прольется свет на высказанное математическое предположение об интеграции метода на практике. В текущем положении вещей необходимое условие будет также являться и достаточным условием. Критерии неопределенности зачастую вызывают у студентов разногласия по причине недостоверных данных. Это упущение должны взять на себя преподаватели ВУЗов, а также учителя в школах, так как на начальном этапе обучения необходимо это тоже учитывать. Из вышесказанного вывода на взгляд опытных людей можно делать выводы, что решить неравенство онлайн очень сложное задание при вхождении в неравенство неизвестных разного типа данных. Об этом сказано на научной конференции в западном округе, на которой выдвигали самые различные обоснования по поводу научных открытий в области математики и физики, а также молекулярного анализа биологически устроенных систем. В нахождении оптимального решения абсолютно все логарифмические неравенства представляют научную ценность для всего человечества. Исследуем данный подход на предмет логических заключений по ряду несовпадений на высшем уровне понятий о существующем объекте. Логика подсказывает иное, чем видно на первый взгляд неопытному студенту. По причине возникновения масштабных аналогий, будет рационально сначала приравнять отношения к разности предметов исследуемой области, а затем показать на практике наличие общего аналитического результата. Решение неравенств абсолютным образом завязано на применении теории и будет важно для каждого изучить такой необходимый для дальнейших исследований раздел математики. Однако, при решении неравенств вам нужно найти все корни составленного уравнения, а уже затем нанести все точки на ось ординат. Некоторые точки будут проколоты, а остальные войдут в интервалы с общим решением. Начнем изучать раздел математики с азов важнейшей дисциплины школьной программы. Если тригонометрические неравенства являются неотъемлемой частью текстовой задачи, то, как раз применять ресурс для вычисления ответа просто необходимо. Введите левую и правую части неравенства корректно, нажмите на кнопу и получите результат в течение нескольких секунд. Для быстрых и точных математических вычислений с числовыми или символьными коэффициентами перед неизвестными, вам как всегда понадобится универсальный калькулятор неравенств и уравнений, который сможет в считанные секунды предоставить ответ на поставленную вами задачку. Если у вас нет времени на написание целого ряда письменных упражнений, то обоснованность сервиса неоспорима даже невооруженным глазом. Для студентов такой подход является более оптимальным и оправданным с точки зрения экономии материальных ресурсов и времени. Напротив катета лежит угол, а для его измерения необходим циркуль, но вы сможете в любо момент воспользоваться подсказками и решите неравенство не применяя никаких формул приведения. Означает ли это успешное завершение начатого действия? Однозначно ответ будет положительным.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

Самарской области

« Уравнения

и

неравенства

с параметрами»

учебное пособие

Клявлино

Учебное пособие

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Введение……………………………………………………………3-4

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…...16-18

Задачи ЕГЭ………………………………………………………...18-20

Задания для самостоятельной работы…………………………...21-28

Введение.

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

    Выделить особое значение - это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

    Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0 . Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax < b (а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а < 0 . Аналогично для неравенства

ах < b множество решений – промежуток (-;), если a > 0, и (; +), если а < 0.

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение.

Если а = 0 , то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = - решение уравнения.

Ответ : при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3) , рассмотрим два случая:

а= -3 и а ¹ -3.

Если а= -3 , то любое действительное число х является корнем уравнения (1). Если же а ¹ -3 , уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение : Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а - 2) х = а 2 – 4а +4

2(а - 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =
.
По условию х > 1 , то есть
>1, а > 4.

Ответ: При а {2} U (4;∞).

Пример 4 . Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

y = a – семейство горизонтальных прямых;

y = - графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0 , то уравнение решений не имеет. Если а ≠ 0 , то уравнение имеет одно решение.

Пример 5 . С помощью графиков выяснить, сколько корней имеет уравнение:

|х| = ах – 1.

y =| х | ,

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1 - один корень

при | а| ≤1 – уравнение корней не имеет.

Пример 6 . Решить неравенство ах + 4 > 2х + а 2

Решение : ах + 4 > 2х + а 2
(а – 2) х >
а 2 – 4. Рассмотрим три случая.


Ответ. х > а + 2 при а > 2; х <а + 2, при а < 2; при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Квадратное уравнение – это уравнение вида ах ² + b х + с = 0 , где а≠ 0,

а, b , с – параметры.

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² - 4 ac , (
²-
ас)

2) формул корней квадратного уравнения: х 1 =
, х
2 =
,

1,2 =
)

Квадратными называются неравенства вида

a х 2 + b х + с > 0, a х 2 + b х + с< 0, (1), (2)

a х 2 + b х + с ≥ 0, a х 2 + b х + с ≤ 0, (3), (4)

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 < х 2 ), то при а > 0 он положителен на множестве (-; х 2 )
2; +) и отрицателен на интервале

(х 1 ; х 2 ). Если а < 0, то трехчлен положителен на интервале (х 1 ; х 2 ) и отрицателен при всех х (-; х 1 )
2; +).

Пример 1. Решить уравнение ах² - 2 (а – 1)х – 4 = 0 .

Это квадратное уравнение

Решение : Особое значение а = 0.

    При а = 0 получим линейное уравнение 2х – 4 = 0 . Оно имеет единственный корень х = 2.

    При а ≠ 0. Найдем дискриминант.

D = (а-1)² + 4а = (а+1)²

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ - 1 , то D >0 . По формуле корней получим: х=
;

х 1 =2, х 2 = -.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ - 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8 - графиком является парабола;

y - семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а <-9 , уравнение решений не имеет; при а=-9, уравнение имеет одно решение; при а>-9 , уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х?

Решение. Квадратный трехчлен положителен при всех значениях х, если

а-3 > 0 и D <0, т.е. при а, удовлетворяющих системе неравенств






, откуда следует, что a > 6 .

Ответ. a > 6

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение
= 0

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

х – а = 0, х = а.

Ответ: При а ≠ - 2, х=а

При а = -2 корней нет.

Пример 2 . Решить уравнение
-
=
(1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² - 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² - (а² - 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а - 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.

Если х 1 +1=0, то есть (а+1) + 1= 0 , то а= -2. Таким образом,

при а= -2 , х 1 -

Если х 1 +2=0, то есть (а+1)+2=0, то а = - 3 . Таким образом, при а = - 3, х 1 - посторонний корень уравнения. (1).

Если х 2 +1=0, то есть (а – 3) + 1= 0 , то а = 2 . Таким образом, при а = 2 х 2 - посторонний корень уравнения (1).

Если х 2 +2=0, то есть (а – 3) + 2 = 0, то а=1 . Таким образом, при а = 1,

х 2 - посторонний корень уравнения (1).

В соответствии с этим при а = - 3 получаем х = - 3 – 3 = -6 ;

при а = - 2 х = -2 – 3= - 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2 , то х= -5 ; 3) если а= 0 , то корней нет; 4) если а= 1 , то х= 2; 5) если а=2 , то х=3 ; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х 1 = а + 1, х 2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида
=g (x ) равносильно системе

Неравенство f (x ) ≥ 0 следует из уравнения f (x ) = g 2 (x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

g(x)


≥g(x)

Пример 1. Решите уравнение
= х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе
.

При а = 2 первое уравнение системы имеет вид 0 х = 5 , то есть не имеет решений.

При а≠ 2 х=
.
Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1:
≥ - 1,
≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х=
,
при < а ≤ 2 уравнение решений не имеет.

Пример 2. Решить уравнение
= а
(приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Ответ : при а<0 –решений нет;

при а 0 – одно решение.

Пример 3 . Решим неравенство (а+1)
<1.

Решение. О.Д.З. х ≤ 2 . Если а+1 ≤0 , то неравенство выполняется при всех допустимых значениях х . Если же а+1>0 , то

(а+1)
<1.

<



откуда х (2-
2

Ответ. х (- ;2 при а (-;-1, х (2-
2

при а (-1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a
x= (-1)
n arcsin a+πn, n Z, ≤1, (1)

Cos x = a
x = ±arccos a + 2 πn, n Z, ≤1.
(2)

Если >1, то уравнения (1) и (2) решений не имеют.

tg x = a
x= arctg a + πn, n Z, aR

ctg x = a
x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a
arcsin a + 2 πn
Z,

при a <-1, xR ; при a ≥ 1, решений нет.

2. . sin x < a
π - arcsin a + 2 πnZ,

при а≤-1, решений нет; при а >1, xR

3. cos x > a
- arccos a + 2 πn < x < arccos a + 2 πn , n Z ,

при а<-1, xR ; при a ≥ 1 , решений нет.

4. cos x arccos a+ 2 πnZ,

при а≤-1 , решений нет; при a > 1, x R

5. tg x > a, arctg a + πnZ

6. tg x < a, -π/2 + πn Z

Пример1. Найти а , при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

с os 2 x + (2 a -4) cosx +(a – 5)(а+1) =0, решая его как квадратное, получаем cosx = 5-а и cosx = -а-1.

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1
4≤ а ≤ 6, а уравнение cosx = - а-1 при условии -1≤ -1- а ≤ 1
-2 ≤ а ≤0.

Ответ. а -2; 0
4; 6

Пример 2. При каких b найдется а такое, что неравенство
+
b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а <0, и х = - π /2 при а ≥0.

Ответ. b> 0

§ 6. Показательные уравнения и неравенства

1. Уравнение h (x ) f ( x ) = h (x ) g ( x ) при h (x ) > 0 равносильно совокупности двух систем
и

2. В частном случае (h (x )= a ) уравнение а f (x ) = а g (x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f (x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f (x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f (a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств
а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f (x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х =
имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0
8
х >1

>1

>0, откуда
a (1,5;4).

Ответ. a (1,5;4).

Пример 2. Решить неравенство a 2 ∙2 x > a

Решение . Рассмотрим три случая:

1. а< 0 . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых хR .

2. a =0. Решений нет.

3. а > 0 . a 2 ∙2 x > a
2 x >
x > - log 2 a

Ответ. хR при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

1. Уравнение log f (x ) g (x ) = log f (x ) h (x ) равносильно системе

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b
g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g (x ) ≤ log f ( x ) h (x ) равносильно совокупности двух систем:
и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение . Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

logх – 2 = 4 – log a x
logх + log a x – 6 = 0, откуда log a x = - 3

х = а -3 и log a x = 2
х = а 2 . Условие х = а 4
а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а (0; 1)
(1; ).

Пример 2 . Найдите наибольшее значение а , при котором уравнение

2 log -
+ a = 0 имеет решения.

Решение. Выполним замену
= t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0
а ≤.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log (x 2 – 2 x + a ) > - 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ±
и х
3,4 = 1 ±
.

Критические значения параметра: а = 1 и а = 9.

Пусть Х 1 и Х 2 – множества решений первого и второго неравенств, тогда

Х 1
Х
2 = Х – решение исходного неравенства.

При 0< a <1 Х 1 = (- ;1 -
)
(1 +
; +), при
а > 1 Х 1 = (-;+).

При 0 < a < 9 Х 2 = (1 -
; 1 +
), при
а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0< a ≤1 Х = (1 -
;1 -
)
(1 +
;1 +
).

2. 1 < a < 9 Х = (1 -
;1 +
).

3. a ≥ 9 Х – решений нет.

Задачи ЕГЭ

Высокий уровень С1, С2

Пример 1. Найдите все значения р , при которых уравнение

р ctg 2 x + 2sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ (
- 1) + 2sinx + p = 3, sinx =t , t
, t 0.

- p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f (y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f (x ) на


. у
/ = 6 t – 6 t 2 , 6 t - 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t
, E (f ) =
,

При t
, E (f ) =
, то есть при t


,
E (f ) =
.

Чтобы уравнение 3 t 2 – 2 t 3 = p (следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E (f ), то есть p
.

Ответ.
.

Пример 2.

При каких значениях параметра а уравнение log
(4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4x 2 – 4a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

Найдем а .

4∙ 0 2 - 4a + a 2 +7 = (0 2 + 2) 2 ,

a 2 - 4a +7 = 4, a 2 - 4a +3 = 0, a 1 = 1, a 2 = 3.

Проверка.

1) a 1 = 1. Тогда уравнение имеет вид: log
(4 x 2 +4) =2. Решаем его

4x 2 + 4 = (х 2 + 2) 2 , 4x 2 + 4 = х 4 + 4x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log
(4 x 2 +4) =2
х = 0 – единственный корень.

Ответ. 1; 3

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – (р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7р х 2 + 2х 2 – 14 р х - 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – (р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = - 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2
р = - 1; если х 1 = х 2 = - 1, то р + 3 = - 1 – 1 = - 2
р = - 5. Проверим являются ли корни уравнения х 2 – (р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = - 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ (- 1) ∙ 1 – 3 ∙ 1 + 21 ∙ (- 1) = 0 ≤ 0 – верно; для случая р = - 5, х 1 = х 2 = - 1 имеем (- 1) 3 – 7 ∙ (- 5) ∙ (-1) 2 + 2 ∙ (-1) 2 – 14 ∙ (-5) × (- 1) – 3 ∙ (- 1) + 21∙ (-5) = - 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = - 1 и р = - 5.

Ответ. р 1 = - 1 и р 2 = - 5.

Пример 4. Найдите все положительные значения параметра а , при которых число 1 принадлежит области определения функции

у = (а
- а
).