Главная · Изжога и отрыжка · Связь нарушения обмена пуринов и анемии. Презентация генные и хромосомные заболевания. На­рушения свертывающей системы крови

Связь нарушения обмена пуринов и анемии. Презентация генные и хромосомные заболевания. На­рушения свертывающей системы крови

Пурины и пиримидины могут быть синтезированы de novo или переработаны в реутилизационном пути нормального катаболизма. Конечным продуктом полного катаболизма пуринов является мочевая кислота; при катаболизме пиримидинов образуются промежуточные соединения цикла лимонной кислоты.

Расстройства реутилизации пуринов

Синдром Леша - Нихана. HPRT-дефицит приводит к нарушению пути реутилизации гипоксантина и гуанина. Вместо этого пурины деградируют до мочевой кислоты. Кроме того, уменьшение инозитол монофосфата и гуанозил монофосфата приводит к усилению конверсии 5-фосфорибозил-1-пи-рофосфата (PRPP) в 5-фосфорибозиламин, что еще больше усиливает перепроизводство мочевой кислоты. Гиперурикемия предрасполагает к развитию подагры и ее осложнений. Пациенты также имеют ряд когнитивных и поведенческих нарушений, этиология которых неясна; считается, что они не связаны с мочевой кислотой.

Заболевание обычно проявляется в возрасте 3-12 мес с появлением оранжевых песчинок (ксантин)в моче;оно прогрессирует до поражения ЦНС с умственной отсталостью, спастическим церебральным параличом, непроизвольными движениями и самокалечащим поведением (в частности, укусами). Позже хроническая гиперурикемия вызывает симптомы подагры (например, мочекаменную болезнь, нефропатию, подагрический артрит, тофусы).

Диагноз предполагают при сочетании ди-стонии, умственной отсталости и членовредительства. Уровни мочевой кислоты в сыворотке обычно повышены, но обычно проводят подтверждение с использованием HPRT-ферментного анализа.

Способы лечения нарушений функций ЦНС неизвестны; ведение поддерживающее. Самокалечение может потребовать принятия физических мер, удаления зубов, а иногда и лекарственной терапии; применялись различные препараты. Гиперурикемию лечат с применением диеты с низкими дозами пуринов (например, избегая мясные продукты, бобы, сардины) и аллопуринола, ингибитора ксантин оксидазы (последний фермент пути катаболизма пуринов). Аллопуринол предотвращает превращение накопления гипоксантина в мочевую кислоту, потому что гипоксантин хорошо растворим, он выделяется.

Дефицит аденин фосфорибозилтранс-феразы. Это редкое аутосомно-рецессивное заболевание, приводящее к неспособности реутилизировать аденин для синтеза пуринов. Накопленный аденин окисляется до 2,8-дигидроксиаденина, который осаждается в мочевыводящих путях, что приводит к возникновению таких же проблем, что и при вызванной мочевой кислотой нефропатии (например, почечных колик, частых инфекций, и если диагноз установлен поздно, почечной недостаточности). Болезнь может возникнуть в любом возрасте.

Диагностику проводят путем выявления повышенного уровня 2,8-дигидроксиаденина, 8-гидроксиаденина и аденина в моче; диагноз подтверждают по данным ферментного анализа; содержание в сыворотке мочевой кислоты в норме.

Лечение состоит в диетическим ограничении пуринов, приеме большого количества жидкости и предотвращении подщелачивания мочи. Аллопуринол может предотвратить окисление аденина; трансплантация почки может быть необходима при терминальной стадии почечной болезни.

Нарушение синтеза пуриновых нуклеотидов

Повышенная активность фосфорибо-зилпирофосфат синтетазы . Это Х-сцепленное рецессивное заболевание, вызывающее перепроизводство пуринов. Избыточные пурины деградируют, что приводит к развитию гиперурикемии и подагры, а также неврологическим аномалиям и нарушению развития.

Диагноз ставят на основании исследования фермента эритроцитов и в культуре фибробластов кожи.

Лечение состоит в применении аллопуринола и диеты с низким содержанием пуринов.

Дефицит аденилсукциназы. Это аутосомно-рецессивное заболевание, вызывающее глубокую умственную отсталость, аутичное поведение и судороги.

Диагноз ставят на основании выявления повышенного уровня сукциниламиноимидазол карбоксамид рибозида и сукциниладенозина в спинномозговой жидкости и моче.

Эффективного лечения не существует.

Расстройства катаболизма пуринов

Дефицит миоаденилат деаминазы (или дефицит мышечной аденозин монофосфат дезаминазы) . Фермент миоаденилат дезаминаза преобразует АМФ в инозин и аммиак. Дефицит может быть бессимптомным или вызывать миалгию или спазмы, индуцированные физической нагрузкой; экспрессия варьируется, поскольку, несмотря на высокую частоту мутантного аллеля (10-14%), частота мышечного фенотипа довольно низка у гомозиготных пациентов по этому аллелю. При нагрузке у пациентов с симптомами заболевания не накапливается аммиак или инозинмонофосфат, как это происходит у здоровых людей; так диагностируется это расстройство.

Лечение состоит в подборе нагрузки при необходимости.

Дефицит аденозиндезаминазы . Аде-нозиндезаминаза преобразует аденозин и дезоксиаденозин в инозин и дезоксиинозин, которые затем разрушаются и выводятся из организма. Дефицит фермента (из-за одной из >60 известных мутаций) приводит к накоплению аденозина, превращаемого в его рибонуклеотидные и дезоксирибонуклеотидные (дАТФ) формы клеточными киназами. Увеличение содержания дАТФ приводит к ингибированию рибонуклеотидредуктазы и недопроизводству других дезоксирибонукле-отидов. Как результат, снижается репликация ДНК. Иммунные клетки особенно чувствительны к этим дефектам; дефицит аденозин дезаминазы вызывает одну форму тяжелого комбинированного иммунодефицита.

Диагноз ставят на основании низкой активности ферментов эритроцитов и лейкоцитов.

Дефицит пуриннуклеозидфосфорилазы . Это редкий аутосомно-рецессивный дефицит, характеризующийся иммунодефицитом с тяжелым нарушением функций
Т-клеток и часто с неврологическими симптомами. Проявления включают лимфопению, недостаточность тимуса, рецидивирующие инфекции и гипоурикемию. У многих пациентов выявляют задержку развития, атаксию или спастичность.

Дефицит ксантиноксидазы . Ксантиноксидаза является ферментом, катализирующим образование мочевой кислоты из ксантина и гипоксантина. Его недостаток вызывает накопление ксантина, который может выпадать в осадок в моче, вызывая образование симптоматических камней с гематурией, колики при мочеиспускани и инфекции мочевого тракта.

Лечение состоит в приеме большого количества жидкости для минимизации вероятности образования камней и применении аллопуринола у некоторых пациентов.

Нарушения метаболизма пиримидинов

Дефицит уридин монофосфат синтезы. Уридин монофосфат является ферментом, катализирующим реакции оротат фосфорибозилтрансферазы и оротидин-5-монофосфат декарбоксилазы. При наличии дефицита происходит накопление оротовой кислоты, вызывая клинические проявления мегалобластной анемии, оротовую кристаллурию и нефропатию, пороки сердца, косоглазие и рецидивирующие инфекции.

Диагноз ставят на основании анализа ферментов в различных тканях.

Лечение состоит в пероральном приеме уридина.

Нуклеотидами называются соединения, состоящие из азотистого основания, углевода-пентозы и фосфорной кислоты. Примером может служить уридиловая кислота:

В типичном нуклеотиде связь между атомом "N" цикла и первым атомом углерода пентоза - b-N-гликозидная, а связь между остатков фосфорной кислоты и пятым атомом углерода пентозы - сложноэфирная.

1. Классификация нуклеотидов

Нуклеотиды могут быть разделены на классы по нескольким признакам:

а. По характеру входящего в них азотистого основания нуклеотиды могут быть пуринового, пиримидинового, изоаллоксазинового и т.д. рядов.

б. По характеру углевода-пентозы они могут быть рибонуклеотидами (содержат рибозу) или же дезоксирибонуклеотидами (содержат дезоксирибозу). В некоторых синтетических нуклеотидах или нуклеозидах встречается также арабиноза, например, в арабинозилцитозине, используемом в качестве противоопухолевого или противовирусного препарата.

в. По частоте встречаемости в составе нуклеиновых кислот нуклеотиды делятся на главные и минорные. К минорным нуклеотидам относятся те нуклеотиды, количество которых в составе ДНК не превышает 2-3 процентов от их общего числа; на долю минорных нуклеотидов в РНК может приходится до 15-17% от их общего количества. Минорные нуклеотиды образуются в клетках в результате химической модификации главных нуклеотидов; они отличаются от главных нуклеотидов

Или особенностями структуры азотистых оснований (метилированные, гидроксиметилированные, ацетилированные и т.д. производные);

Или особенностями структуры углеводного компонента (как правило, это метилированные производные пентоз);

Или аномальной структурой связи между азотистым основанием и пентозой (так в псевдоуридиловой кислоты присутствует связь, которую можно назвать как b-С5-гликозидную связь). К настоящему времени идентифицировано до пяти десятков различных минорных нуклеотидов.

2.Биологическая роль нуклеотидов

Нуклеотиды выполняют в клетках несколько функций:

во-первых, рибонуклеотиды пуринового или пиримидинового рядов (АМФ, ГМФ,УМФ и ЦМФ и их минорные производные) также как и их дезоксибонуклеотидные аналоги (дАМФ, дГМФ, дТМФ и дЦМФ и их минорные производные) выполняют структурную функцию, являясь мономерными единицами нуклеиновых кислот;

во-вторых, дифосфатные производные мононуклеотидов участвуют во многих метаболических процессах в клетке в качестве активаторов переносчиков различных группировок (Примерами могут служить УДФ-глюкоза, ГДФ-манноза, ЦДФ-холин и др.);

в тертьих, АТФ и ГТФ выступают в клетке как акумуляторы и переносчики энергии, высвобождающейся при биологическом окислении:

в четвертых, НАД+ , НАДФ+ , ФАД, ФМН являются переносчиками восстановительных эквивалентов в клетках (промежуточными переносчиками протонов и электронов);

в пятых, мононуклеотиды выступают в клетках в качестве биорегуляторов. Достаточно вспомнить роль АТФ как аллостерического ингибитора ключевых ферментов ряда метаболических путей (фосфофруктокиназы гликолитического метаболона или цитрансинтазы цикла Кребса):

в шестых, такие соединения как цАМФ или цГМФ выполняют роль мессенджеров или вторых вестников в реализации клеткой внеклеточного регуляторного сигнала (при действии глюкагона на гепатоциты в ускорении мобилизации гликогена играет существенную роль повышение концентрации цАМФ в этих клетках).

3.Усвоение экзогенных нуклеиновых кислот и нуклеотидов

Человек практически не нуждается во внешних источниках нуклеотидов, полностью покрывая свои потребности в этих соединениях за счет эндогенного синтеза при условии, что в клетках имеется необходимое количество исходных соединений для синтеза. Естественно, что проблемы с синтезом таких нуклеотидов как НАД+ или ФАД могут возникнуть при недостаточности в организме витаминов В5 или В2. В дальнейшем мы остановимся лишь на обмене пуриновых и пиримидиновых нуклеотидов.

Нуклеиновые кислоты поступают с пищей в виде нуклеопротеидов, расщепление белковой части которых начинается уже в желудке и завершается в тонком кишечнике. Высвобождающиеся нуклеиновые кислоты расщепляются в тонком кишечнике до мононуклеотидов под действием рибонуклеаз и дезоксирибонуклеаз панкреатического сока. Кроме того, стенкой кишечника выделяются ферменты полинуклеотидазы и фосфодиэстеразы, которые также участвуют в расщеплении нуклеиновых кислот до мононуклеотидов.

Мононуклеотиды в стенку кишечника не всасываются, а подвергаются дальнейшему расщеплению до нуклеоэидов и далее до свободных азотистых оснований, пентоз и фосфорной кислоты под действием нуклеотидаз и фосфатаз кишечной стенки. В стенку кишечника всасываются нуклеозиды, а также перечисленные продукты полного расщепления нуклеотидов; далее они поступают в кровяное русло.

В организме человека большая часть поступивших в кровь пуринов и пиримидинов не используется, а деградирует до конечных продуктов их обмена и выводится из организма. Таким образом, экзогенные нуклеиновые кислоты практически не выступают в качестве поставщиков непосредственных предшественников нуклеотидов в организме человека.

В просвете кишечника, вероятно, под действием его микрофлоры, часть пуриновых нуклеотидов превращается в гипоксантин, ксантин и мочевую кислоту и в таком виде поступают во внутреннюю среду организма.

4. Метаболизм нуклеотидов пиримидинового ряда

Бисинтез нуклеотидов пиримидинового ряда начинается в цитозоле, где при участии цитозольной карбамоилфосфатсинтетазы образуется карбамоилфосфат, причем источником азота для его синтеза является глутамин:

СО2 + Глн + 2АТФ ---> NH2-CO-O-PO3H2 + 2АДФ + Ф + Глу

Дигидрооротовая кислота при участии митохондриального фермента дигидрооротатдегидрогеназы переходит в оротовую кислоту:

В следующей реакции принимает участие фосфорибозилпирофосфат. Он образуется из рибозо-5-фосфата с участием АТФ в ходе реакции, катализируемой ферментом фосфорибозилпирофосфатсинтетазой:

Реакция синтеза фосфорибозилпирофосфата (ФРПФ) не является специфичной для синтеза пиримидиновых нуклеотидов, в ходе этой реакции синтезируется ФРПФ, необходимый для синтеза различных мононуклеотидов.

Оротовая кислота при участии фермента оротат-фосфорибозилтрансферазы переносится на остаток рибозо-5-фосфата с образованием оротидиловой кислоты, которая подвергается декарбоксилированию, в ходе которого образуется первый "настоящий" нуклеотид пиримидинового ряда - уридин-5-монофорная кислота (уридиловая кислота или УМФ). Последняя реакция катализируется оротидилатдекарбоксилазой.

Все остальные нуклеотиды пиримидинового ряда синтезируются из уридиловой кислоты

В ходе синтеза пиримидиновых нуклеотидов используются глутамин, СО2, АТФ, аспартат и ФРПФ. Все эти соединения синтезируются в клетках. Лишь при образовании из дУМФ дезокситимидиловой кислоты используется N5,N10-тетрагидрофолат; это значит, что при недостатке фолиевой кислоты (В9) в организме будет нарушен синтез дезокситимидиловой кислоты, необходимой для последующего синтеза ДНК в клетках.

При образовании дТМФ из дУМФ происходит превращение ТГФ в дигидрофолат. Обратный переход ДГФ в тетрагидрофолат катализируется ферментом дигидрофолатредуктазой. Лекарственный препарат метотрексат (аметоптерин), широко применяемый при противоопухолевой терапии, является мощным ингибитором дигидрофолатредуктазы.

Пиримидиновые нуклеозиды, образующиеся в клетках при деградации соответствующих нуклеотидов, могут с помощью специальных

В то же время образующиеся в ходе внутриклеточного распада свободные азотистые основания пиримидинового ряда повторно не используются и подвергаются расщеплению до конечных продуктов.

Расщепление пиримидиновых нуклеотидов начинается с отщепления рибозофосфатного остатка, а образовавшееся свободное азотистое основание расщепляется без образования специфических конечных продуктов.

Конечными продуктами распада урацила, являются углекислый газ, вода и b-аланин. При расщеплении тимина в клетках в качестве одного из промежуточных продуктов образуется b-аминоизобутират, который после дезаминирования в конечном итоге преобразуется через пропионат в сукцинил-КоА.

5.Метаболизм нуклеотидов пуринового ряда

При синтезе нуклеотидов пуринового ряда, в отличие от синтеза пиримидиновых нуклеотидов, формирование гетероциклического ядра идет непосредственно на рибозо-5-фосфата. Вначале синтезируется ФРПФ, который при взаимодействии с глутамином превращается в 5-фосфорибозиламин: Затем следует большая последовательность реакций, в ходе которых формируется пуриновое ядро. Первым нуклеотидом, образующимся в ходе синтеза является инозиновая кислота (ИМФ): В процессе синтеза 1 молекулы инозиновой кислоты клеткой расходуется 6 молекул АТФ.

Глутамин, аспартат, глицин, углекислый газ образуются в организме, однако в условиях недостатка фолиевой кислоты могут возникнуть проблемы с обеспеченностью синтеза пуриновых нуклеотидов одноуглеродными группировками, переносчиками которых служит в клетках ТГФ.

Из ИМФ синтезируются другие нуклеотиды пуринового ряда. При синтезе АМФ (см. далее следующую схему) идет аминирование ИМФ, источником аминогруппы служит аспартат. Реакция идет в два этапа, а затраты энергии покрываются за счет гидролиза ГТФ.

При синтезе гуаниловой кислоты вначале остаток гипоксантина в ИМФ окисляется до ксантина с образованием КМФ,а затем идет аминирование и превращение КМФ в ГМФ. Донором аминогруппы выступает глутамин, энергетика реакции обеспечивается расщеплением АТФ.

Образовавшиеся АМФ и ГМФ в ходе реакций трансфосфорилирования с АТФ преобразуются в АДФ и ГДФ, а затем последние подвергаются фосфорилированию за счет энергии, выделяющейся при биологическом окислении, превращаясь в АТФ и ГТФ.

Описанный синтез пуриновых нуклеотидов с использованием в качестве пластического материала атомных группировок из молекул других соединений получил название синтеза de novo. В клетках млекопитающих работают также механизмы реутилизации образовавшихся в ходе внутриклеточного расщепления пуриновых нуклеотидов азотистых оснований. Этот механизм синтеза пуриновых нуклеотидов получил название "синтез сбережения."

Наиболее важным путем реутилизации является фосфорибозилирование свободных азотистых оснований. Известны два варианта этого процесса:

а. При участии фермента гипоксантин-гуанин - фосфорибозилтрансферазы свободные гипоксантин или гуанин превращаются в ИМФ и ГМФ соотвественно:

б. При участии фермента аденин-фосфорибозилтрансферазы в аналогичной реакции свободный аденин превращается в АМФ.

Кстати говоря,такого механизма для реутилизации пиримидиновых азотистых оснований не существует. Имеющаяся в клетках оротат-фосфорибозилтрансфераза не может катализировать фосфорибозилирование тимина, цитозина или урацила.

Превращение пуриновых нуклеозидов в нуклеотиды катализирует фермент аденозинкиназа:

Аденозин + АТФ-------> АМФ + АДФ. Этот фермент катализирует также фосфорилирование гуанозина, инозина и их дезоксипроизводных.

Расщепление пуриновых нуклеотидов идет во всех клетках. Конечным продуктом катаболизма образующихся при расщеплении нуклеотидов пуриновых азотистых оснований является мочевая кислота. С наибольшей интенсивностью образование мочевой кислоты идет в печени, тонком кишечнике и почках. Установлено, что до 20% мочевой кислоты у человека может расщепляется до СО2 и NH3 и выделяться через кишечник, причем это расщепление мочевой кислоты не связано с действием кишечной микрофлоры.

Нуклеотиды в клетках подвергаются дефосфорилирования с образованием аденозина или гуанозина. Аденозин при участии фермента аденозиндезаминазы превращается в инозин и далее путем фосфоролиза в гипоксантин. Гипоксантин при участии ксантиноксидазы вначале окисляется в ксантин, а затем при участии того же фермента ксантин переходит в мочевую кислоту. При расщеплении ГМФ вначале в несколько этапов происходит образование свободного гуанина, который при участии фермента гуаназы переходит непосредственно в ксантин, а затем окисляется в мочевую кислоту.

Образовавшаяся мочевая кислота поступает в кровь и выводится через почки с мочей. Нормальное содержание мочевой кислоты в крови составляет 0,12 - 0,46 мМ/л. Общее количество растворенной мочевой кислоты в жидкой фазе организма (уратный пул) составляет для мужчин величину порядка 1,2 г. Ежесуточно с мочой выводится от О,5 до 0,7 г мочевой кислоты.

6.Синтез дезоксирибонуклеотидов

Специального пути синтеза дезоксирибонуклеотидов в клетках не существует.Дезоксирибонуклеотиды образуются из рибонуклеотидов путем восстановления последних. Источником восстановительных эквивалентов для образования дезокрибонуклеотидов служит специальный белок тиоредоксин, который может существовать в форме дитиола или же после отдачи атомов водорода в форме дисульфида. Дисульфидная форма тиоредоксина может превращаться в клетке в дитиольную форму; донором восстановительных эквивалентов в последнем случае является НА-ФН+Н

7.Регуляция синтеза нуклеотидов

Скорость синтеза нуклеотидов должна соответствовать потребностям клетки, в связи с чем она должна эффективным образом регулироваться. В работе механизмом регуляции синтеза пуриновых и пиримидиновых нуклеотидов много общего: решающую роль в регуляции играет ретроингибирование - снижение скорости синтеза нуклеотидов при достижении их достаточной концентрации в клетках за счет аллостерического ингибирования ключевых ферментов соответствующих метаболических путей.

Основными регуляторными ферментами метаболического пути синтеза пиримидиновых нуклеотидов являются карбамоилфосфатсинтетаза (Е1) и аспартаттранскарбамоилаза (Е2). Активность первого фермента (Е1) ингибируется по аллостерическому механизму высокими концентрациями УТФ в клетке, а активность второго фермента (Е2) - высокими концентрациями ГТФ. Активность карбамоифосфатсинтетазы, кроме того, активируется высокими концентрациями ФРПФ. С другой стороны, синтез ФРПФ тормозится высокими концентрациями дТДФ за счет аллостерического ингибирования ФРПФ-синтетазы (Е3).

Накопление избыточных количеств пуриновых нуклеотидов в клетке также приводит к торможению их синтеза.

Прежде всего следует отметить, что накопление в клетке как адениловых, так и гуаниловых нуклеотидов по аллостерическому механизму тормозит активность ФРПФ-синтетазы (Е). Одновременно накопление АМФ и ГМФ также по аллостерическому механизму снижает активность ФРПФ-амидотрансферазы (Е), причем ингибирующий эффект высоких концентраций ГМФ более выражен, нежели у АМФ. Торможение пуриновыми нуклеотидами активности ФРПФ-синтетазы имеет для регуляции их синтеза большее значение, чем ингибирование ФРПФ-амидотрансферазы, так как в первом случае выключается и синтез пуриновых нуклеотидов de novo и "синтез сбережения", тогда как во втором случае прекращается лишь синтез de novo.

Далее, избыточные концентрации АМФ ингибируют синтез АМФ из ИМФ, а высокие концентрации ГМФ тормозят образование этого нуклеотида из ИМФ. В обоих случаях работают механизмы аллостерического ингибирования ферментов, участвующих в этих превращениях.

Наконец, синтез АМФ из ИМФ стимулируется ГТФ, поскольку ГТФ является источником энергии для синтеза. В свою очередь, АТФ стимулирует синтез ГМФ из ИМФ по той же самой причиной. Наличие этого регуляторного механизма позволяет сбалансировать объемы синтеза адениловых и гуаниловых нуклеотидов в клетке.

Регуляция синтеза дезоксирибонуклеотидов обеспечивает скоординированный в количественном отношении синтез различных дезоксинуклеотидов, необходимых для последующей сборки дезоксиполинуклеотидных цепей ДНК. Важнейшую роль в этой регуляции играет фермент рибонуклеозиддифосфатредуктаза. Этот фермент имеет два типа аллостерических участков: один из них регулирует общую активность фермента, а другой - субстратную специфичность. Общая каталитическая активность снижается при связывании в первом центре дАТФ, последний служит сигналом об избытке дезоксинуклеотидов в клетке. Связывание различных дНуДФ ил дНуТФ в аллостерических участках второго типа позволяет ферменту более или менее избирательно нарабатывать недостающие в данный момент в клетке те или иные дезоксирибонуклеозиддифосфаты

8. Нарушения обмена нуклеотидов при патологии

Пиримидиновые нуклеотиды не имеют специфических конечных продуктов обмена, видимо, поэтому при состояниях, характеризующихся избыточным синтезом пиримидинов, как правило, нет выраженных клинических признаков. При торможении синтеза дезокситимидиловой кислоты, обусловленном недостатком в организме фолиевой кислоты или кобаламина, идет одновременно и нарушение синтеза пуриновых нуклеотидов, что проявляется в виде нарущения синтеза нуклеиновых кислот с развитием той или иной формы анемии.

Наиболее известным вариантом нарушения синтеза пиримидинов является оротатацидурурия - повышенное выделение с мочой продукта неполного синтеза пиримидинов - оротовой кислоты. Оротатацидурия чаще всего является следствием генетически обусловленного нарушения синтеза двух ферментов: оротат-фосфорибозилтрансферазы и оротидилатдекарбоксилазы. Синтезируемая оротовая кислота не используется в клетках и накапливается в органах и тканях, она в повышенных количествах выделяется с мочей. Для детей с этой патологией характерны отставание в развитии, мегалобластическая анемия и "оранжевая кристаллоурия", последняя обусловлена образованием в моче кристаллов оротовой кислоты, имеющих оранжевый цвет. Для лечения таких детей используется уридин, который достаточно хорошо усваиваивается организмом, однако уридин становится еще одним незаменимым компонентом пищи.

Наиболее известным заболеванием, тесно связанным с нарушением обмена пуриновых нуклеотидов, является подагра. У больных с этой патологией наблюдается повышенное содержание мочевой кислоты в крови и тканях, а также избыточное количество уратов в моче. В норме концентрация мочевой кислоты в крови и других биологических жидкостях достаточно близка к насыщающей. Поэтому повышение ее содержания в биологических жидкостях приводит к появлению в них кристаллов мочевой кислоты. Если кристаллы появляются в суставной жидкости, развивается подагрические артриты. Выпадение кристаллов мочевой кислоты непосредственно в ткани вызывает асептическое воспаление с последующим инкапсулированием образовавшихся кристаллов и формированием подагрических узелков. Наиболее тяжелым проявлением этого заболевания является подагрическая нефропатия с нарушением функции почек.

От подагры страдает от 0,3% до 1,7% населения, причем у мужчин подагра встречается в 20 раз чаще, чем у женщин. Развитие заболевания тесно связано с гиперурекемией - повышеннным содержанием мочевой кислоты в крови. В норме содержание мочевой кислоты составляет 3 - 7 мг/дл (0,12 - 0,46 мМ/л). Среди лиц с содержанием мочевой кислоты в пределах 7 - 8 мг/дл 20% больных подагрой; если же содержание мочевой кислоты в крови превышает 9 мг/дл число больных подагрой возрастает до 90 и более процентов.

Причинами подагры в ряде случаев является нарушение функционирования таких ферментов как ФРПФ-синтетаза или гипоксантин-гуанин-фосфорибозилтрансфераза. У ряда больных было обнарушено повышение активности фермента ФРПФ-синтетазы или снижение чувствительности фермента к ингибирующему действию пуриновых нуклеотидов. В обоих вариантов объем синтеза пуриновых нуклеотидов возрастает, что приводит к гиперпродукции мочевой кислоты.

При снижении активности гипоксантин-гуанин-фосфорибозилтрансферазы в клетках снижается уровень повторного использования образующихся в них гипоксантина и гуанина за счет торможения "синтеза сбережения". Возникает нехватка пуриновых нуклеотидов, которая компенсируется активацией синтеза пуринов de novo, что в конечном итоге ведет к повышенному образованию пуринов в организме и, соответственно, к повышения содержания мочевой кислоты в организме.

При лечении подагры стремятся уменьшить в рационе количество продуктов, содержащих нуклеиновые кислоты или соединения группы пурина. Хороший эффект дает использование лекарственного препарата - аллопуринола. Аллопуринол в клетках под действием фермента ксантиноксидазы окисляется до аллоксантина, а аллоксантин является мощным конкурентным ингибитором ксантиноксидазы. Образование ксантина и мочевой кислоты в клетках резко снижается, а из организма в качестве конечного продукта обмена пуринов начинает выделяться гипоксантин, растворимость которого в биологических жидкостях в несколько раз выше, чем растворимость мочевой кислоты.

При полном отсутствии в клетках гипоксантин-гуанин-фосфорибозилтрансферазы развивается болезнь Леш-Нихана, для которой характерны высокий уровень гиперурикемии, камни в мочевыводящих путях, корковый паралич, судороги и крайне агрессивное поведение. в том числе и стремление к членовредительству (Ребенок, например. может обкусать собственные пальцы или губы).

Гиперурикемия может также встречаться при воздействии на человека ионизирующей радиации. В этом случае гиперурикемия является отражением интенсификации распада нуклеиновых кислот в облученных органах и тканях.

Пуриновые (аденин, гуанин) и пиримидиновые (цитозин, урацил и тимин) основания входят в состав нуклеиновых кислот - РНК и ДНК. Нарушение их обмена приводит к повышению уров­ня мочевой кислоты и наблюдается при различных заболеваниях почек, лейкозах, но особенно отчетливо при подагре, известной еще со времен Гиппократа.

Подагра (podagra; греч. капкан, ломота, слабость в ногах; по­дагра от podos - нога, стопа + agra - захват, приступ) - хрони­ческое заболевание, обусловленное нарушением обмена пуринов. Оно характеризуется отложением солей мочевой кислоты в тканях с развитием в них вначале воспалительных, а затем деструктивно-склеротических изменений. Проявляется, главным образом, рециди­вирующим артритом, образованием подкожных узелков, симптома­ми мочекаменной болезни. В настоящее время термином «подагра» обозначают группу заболеваний, проявляющихся:

1) гиперурикемией;

2) повторными приступами острого артрита, при котором в лейкоцитах из синовиальной жидкости обнаруживаются кристал­лы урата натрия;

3) большими отложениями урата натрия чаще всего в суставах конечностей и вокруг них, что нередко сопровождается деформаци­ей суставов и тяжелой хромотой;

4) повреждением почек, включая интерстициальные ткани и кровеносные сосуды;

5) образованием камней из мочевой кислоты.

Указанные симптомы могут встречаться как порознь, так и в различных сочетаниях. Подагру относят к мультифакториальным заболеваниям. В силу того, что две специфические причины подаг­ры (недостаточность гипоксантингуанинфосфорибозилтрансфера-зы и гиперактивность 5-фосфорибозил-1-пирофосфатсинтетазы) сцеплены с Х-хромосомой, то подагра - это болезнь пожилых мужчин; на долю женщин приходится до 5% случаев заболевания. Дети и подростки болеют редко. Пик заболеваемости приходится на пятое десятилетие жизни. В целом подагрой страдает от 0,13 до 0,37% от общего числа популяции.

Итак, обязательным симптомом подагры является гиперурике­мия. Об абсолютном увеличении уровня уратов в сыворотке гово­рят в том случае, когда их концентрация превышает предел раство­римости урата натрия в сыворотке. Для уратов этот предел состав ляет 60 мг/л у женщин и 70 мг/л у мужчин. Концентрация урат в сыворотке более 70 мг/л (эффект перенасыщения сыворотки ура-том) увеличивает риск подагрического артрита и нефролитиаза. На уровень урата влияет пол, возраст (очевидно, через влияние на почечный клиренс урата эстрогенов и андрогенов), масса тела, ар­териальное давление, уровень азота мочевины и креатинина в кро­ви, потребление алкоголя (хроническое потребление алкоголя по­вышает продукцию мочевой кислоты и снижает ее экскрецию).

Гиперурикемия обнаруживается у 2-18% населения. Частота и распространенность подагры меньше, чем гиперурикемии, и состав­ляет 0,20-0,35 на 1000 человек. Гиперурикемия - необходимое ус­ловие развития подагры. Мочевая кислота образуется при окисле­нии пуриновых оснований. 2/3 мочевой кислоты выводится с мо­чой (300-600 мг/сут), а 1/3 - через желудочно-кишечный тракт, в котором она разрушается бактериями.

Гиперурикемия может быть обусловлена повышенной скоростью продукции мочевой кислоты, сниженной ее секрецией почками или тем и другим. В этой связи подагру и гиперурикемию делят на метаболическую и почечную.

Метаболическая гиперурикемия и подагра обусловлена повы­шенной продукцией мочевой кислоты, о чем можно судить по повы­шенной экскреции (более 600 мг/сут) мочевой кислоты даже в усло­виях ограниченного приема пуринов с пищей. На долю этого типа подагры приходится менее 10% всех случаев этого заболевания.

Мочевая кислота, как известно, является конечным продуктом метаболизма пуринов. Скорость синтеза мочевой кислоты у человека определяется внутриклеточной концентрацией 5-фосфорибо-зил-1-пирофосфата (ФРПФ): при повышении уровня ФРПФ в клетке синтез мочевой кислоты усиливается, а при снижении - уменьшается.

Избыточная продукция мочевой кислоты может быть первич­ной и вторичной. Первичная гиперурикемия обусловлена врожден­ной недостаточностью гипоксантингуанинфосфорибозилтрансфера-зы или повышенной активностью ФРПФ-синтетазы и наследуется сцепленно с Х-хромосомой. Вторичная гиперурикемия, обусловлен­ная гиперпродукцией мочевой кислоты, может быть связана со многими причинами:

1) ускорением биосинтеза пуринов de novo;

2) недостаточностью глюкозо-6-фосфатазы (например, при бо­лезни накопления гликогена I типа), при которой отмечается по­вышенная продукция мочевой кислоты и ускоряется синтез пури­нов de novo;

3) ускорением синтеза ФРПФ;

4) ускорением распада пуриновых нуклеотидов.
Последние две причины включаются при дефиците в клетке

глюкозы как источника энергии. Полагают, что у большинства больных со вторичной гиперурикемией на почве избыточной про­дукции мочевой кислоты основное нарушение заключается в уско­рении кругооборота нуклеиновых кислот, что характерно для мно­гих заболеваний: миелоз, лимфолейкоз, миелома, вторичная поли-цитемия, пернициозная анемия, талассемия, гемолитические ане­мии, инфекционный мононуклеоз, карцинома и т.д. Ускорение кру­гооборота нуклеиновых кислот приводит к гиперурикемии и ком­пенсаторному повышению скорости биосинтеза пуринов de novo.

Почечная гиперурикемия и подагра обусловлена снижением эк­скреции мочевой кислоты почками. На ее долю приходится до 90% всех случаев подагры. Экскреция мочевой кислоты зависит от клубочковой фильтрации, канальцевой реабсорбции и секреции.

Уменьшение скорости фильтрации (1-й фактор), усиление ре­абсорбции в проксимальных канальцах (2-й фактор) или снижение скорости секреции (3-й фактор) мочевой кислоты снижают ее по­чечную экскрецию. Вполне вероятно, что у больных подагрой име­ют место все три фактора.

Почечный тип гиперурикемии и подагры может быть первич­ным и вторичным. Первичная почечная подагра встречается у больных с патологией почек: поликистоз, свинцовая нефропатия. Вторичная почечная гиперурикемия может наблюдаться при при­еме диуретиков, уменьшающих объем циркулирующей плазмы, что сопровождается снижением фильтрации мочевой кислоты, усиле­нием ее канальцевой реабсорбции и уменьшением секреции моче­вой кислоты. Ряд других лекарственных средств (аспирин в низких дозах, никотиновая кислота, пиразинамид, этанол и др.) также вы­зывает гиперурикемию посредством снижения экскреции мочевой кислоты, однако механизмы до сих пор не установлены.

Нефрогенный несахарный диабет, недостаточность надпочечни­ков, уменьшая ОЦП, индуцируют гиперурикемию. Гиперурикемия может быть следствием конкурентного ингибирования секреции мочевой кислоты избытком органических кислот, которые секрети-руются аналогичными механизмами почечных канальцев, что и мочевая кислота. Избыток органических кислот наблюдается при голодании (кетоз, свободные жирные кислоты), алкогольном и диа­бетическом кетоацидозе, лактацидозе любого происхождения.

Гиперурикемия, характерная для гиперпара- и гипопаратирео-за, гипотиреоза, также может иметь почечную основу, но механизм ее возникновения неясен. Эволюция подагры проходит 4 стадии:

1) бессимптомная гиперурикемия,

2) острый подагрический артрит,

3) межкритический период,

4) хронические подагрические отложения в суставах.

Стадия бессимптомной гиперурикемии характеризуется повы­шением уровня урата в сыворотке крови, но симптомы артрита, по­дагрические отложения в суставах или мочекислые камни отсут­ствуют. У мужчин, подверженных классической подагре, гиперури­кемия начинается в период полового созревания, а у женщин из группы риска - с наступлением менопаузы. Бессимптомная гипе­рурикемия может сохраняться в течение всей жизни. Несмотря на то, что гиперурикемия определяется практически у всех больных подагрой, лишь только у 5% лиц с гиперурикемией когда-либо раз­вивается эта болезнь.

Стадия бессимптомной гиперурикемии заканчивается с первым приступом подагрического артрита или нефролитиаза.

Артрит, как правило, предшествует нефролитиазу, который развивается обычно через 20-30 лет стойкой гиперурикемии.

Следующая стадия - острый подагрический артрит. Причи­ны, вызывающие начальную кристаллизацию урата натрия в сус­таве после длительного периода бессимптомной гиперурикемии, изучены не полностью, хотя известно, что отложению уратов в тканях способствует сдвиг рН в кислую сторону и нарушение обме­на мукополисахаридов, поддерживающих ураты в растворенном со­стоянии. Постоянная гиперурикемия в конечном итоге приводит к формированию микроотложений в плоских клетках синовиальной оболочки и к накоплению урата натрия в хряще на протеоглика-нах, обладающих высоким сродством к нему. Различные причины, но чаще всего травмы, сопровождающиеся разрушением микроокру­жения и ускорением кругооборота протеогликанов хряща, обуслов­ливают высвобождение кристаллов урата в синовиальную жид­кость. Низкая температура в суставе, неадекватная реабсорбции воды и урата из синовиальной жидкости в полости сустава, обус­ловливают накопление достаточного количества кристаллов урата в нем. Кристаллы мочевой кислоты фагоцитируются в суставах нейтрофилами, затем разрушают их с высвобождением лизосо-мальных ферментов, которые являются медиаторами острого по­дагрического воспаления. Острый приступ артрита провоцируется рядом моментов, в том числе:

1) фагоцитозом кристаллов лейкоцитами с быстрым высвобож­дением из них хемотаксических белков;

2) активацией калликреиновой системы;

3) активацией комплемента с последующим образованием хе­мотаксических его компонентов;

4) разрушением кристаллами уратов лизосом лейкоцитов и вы­делением в синовиальную жидкость лизосомных продуктов.

Если в понимании патогенеза острого подагрического артрита достигнут определенный прогресс, то многие вопросы, касающиеся спонтанного прекращения острого приступа и эффекта колхицина, еще ждут ответа.

Вначале крайне болезненный артрит затрагивает один из сус­тавов со скудной общей симптоматикой. Позднее в процесс вовле­кается несколько суставов на фоне лихорадочного состояния. Про­должительность приступов различна, но все же ограничена. Они перемежаются с бессимптомными периодами. Острый подагричес­кий артрит - это болезнь преимущественно ног. Чем дистальнее место поражения, тем более типичны приступы. Иногда развивает­ся подагрический бурсит, причем чаще всего в процесс вовлекаются сумки коленного и локтевого суставов. Перед первым резким при­ступом подагры больные могут ощущать постоянную болезнен­ность с обострениями, но чаще первый приступ бывает неожидан­ным и имеет «взрывной» характер. Он, как правило, начинается в ночное время, боль в воспаленном суставе чрезвычайно сильна.

Приступ может провоцироваться травмой, приемом алкоголя и некоторых лекарственных средств, погрешностями в диете, хирурги­ческой операцией. В течение нескольких часов интенсивность дос­тигает своего пика, отчетливо проявляются признаки прогрессиру ющего воспаления, нарастает лейкоцитоз, повышается температура тела, увеличивается СОЭ.

Приступы подагры могут продолжаться в течение одного или двух дней или нескольких недель, но они купируются, как прави­ло, спонтанно. Последствий не остается, и выздоровление кажется полным, т.е. наступает 3-я стадия - бессимптомная фаза, называ­емая межкритическим периодом, в течение которого больной не предъявляет никаких жалоб. У 7% больных второго приступа вооб­ще не наступает, а у 60% болезнь рецидивирует в течение года.

Од­нако межкритический период может длиться даже до 10 лет и за­вершаться повторными приступами, каждый из которых становит­ся все более длительным, а ремиссии все менее полными. При пос­ледующих приступах в процесс вовлекается обычно несколько сус­тавов, сами приступы становятся более тяжелыми, более продол­жительными и сопровождаются лихорадкой.

У нелеченных больных скорость продукции урата превышает скорость его элиминации. В итоге в хрящах, синовиальных оболоч­ках, сухожилиях и мягких тканях появляются скопления кристал­лов урата натрия. Подагрические отложения часто локализуются вдоль локтевой поверхности предплечья в виде выпячиваний сумки локтевого сустава, но ходу ахиллова сухожилия, в области завитка и противозавитка ушной раковины. Они могут изъязвляться и вы­делять беловатую вязкую жидкость, богатую кристаллами урата натрия. Подагрические отложения редко инфицируются.

У 90% больных с подагрическим артритом выявляется различ­ная степень нарушения функции почек - нефропатия. До введе­ния в практику гемодиализа 17-25% больных подагрой умирали от почечной недостаточности.

Различают несколько типов повреждения почечной паренхимы:

1) уратная нефропатия, обусловленная отложением кристал­лов урата натрия в интерстициальную ткань почек;

2) обструктивная нефропатия, обусловленная образованием кристаллов мочевой кислоты в собирательных канальцах, почеч­ной лоханке или мочеточниках.

Факторы, способствующие образованию отложений урата в почках, неизвестны. Нефролитиаз встречается с частотой 1-2 слу­чая на 1000 больных подагрой. Ведущим фактором, способствую­щим образованию мочекислых камней, служит повышенная экскре­ция мочевой кислоты. Гиперурикацидурия может быть результатом первичной подагры, врожденного нарушения метаболизма пуринов, приводящего к повышению продукции мочевой кислоты, миелопро-лиферативного заболевания и других неопластических процессов.

Если экскреция мочевой кислоты с мочой превышает 1100 мг/сут, частота камнеобразования достигает 50%.

Образование мочекислых камней коррелирует также с гиперу-рикемией: при уровне мочевой кислоты 130 мг/л и выше частота камнеобразования достигает примерно 50%. Образованию мочекис­лых камней способствует чрезмерное закисление мочи; концентри-рованность мочи. Кристаллы мочевой кислоты могут служить яд­ром для образования кальциевых камней.

Принципы патогенетической профилактики и лечения боль­ных с нарушением пуринового обмена. Поскольку острый подагри­ческий артрит - это воспалительный процесс, то следует прово­дить противовоспалительное лечение, прежде всего колхицином (стабилизирует мембраны лизосом, подавляет хемотаксис и фаго­цитоз, оказывает антимитотическое действие на нейтрофилы) до наступления облегчения состояния больного или появления побоч­ных реакций со стороны желудочно-кишечного тракта (при внутри­венном введении колхицина побочные эффекты со стороны желу­дочно-кишечного тракта не возникают). К числу побочных эффек­тов относятся: угнетение функции костного мозга, аллопеция, не­достаточность печени, психическая депрессия, судороги, восходя­щий паралич, угнетение дыхания. Из других противовоспалитель­ных средств эффективны индометацин, фенилбутазон, напроксен, фенопрофен. Препараты, стимулирующие экскрецию мочевой кис­лоты, и аллопуринол при остром приступе подагры неэффективны. При неэффективности или противопоказаниях к колхицину и нестероидным противовоспалительным средствам прибегают к системному (внутривенно или перорально) или местному (в сус­тав) введению глюкокортикоидов. Это лечение особенно целесо­образно при невозможности использовать стандартную лекар­ственную схему.

Гиперурикемия, обусловленная частичной или полной недоста­точностью гипоксантингуанинфосфорибозилтрансферазы (дефицит этого фермента уменьшает расход фосфорибозилпирофосфата, ко­торый накапливается в больших, чем в норме, концентрациях, ус­коряя биосинтез пуринов de novo, что обусловливает гиперпродук­цию мочевой кислоты), успешно поддастся воздействию аллопури-нола - ингибитора ксантиноксидазы, которая катализирует пре­вращение ксантина и гипоксантина в мочевую кислоту.

Для уменьшения вероятности рецидива острого приступа реко­мендуется:

Ежедневный профилактический прием колхицина или индо-метацина;

Контролируемое уменьшение массы тела у больных с ожи­рением;

Устранение ряда провоцирующих факторов (алкоголь);

Применение антигиперурикемических препаратов с целью поддержания уровня урата в сыворотке крови ниже 70 мг/л, т.е. в той минимальной концентрации, при которой урат насыщает вне­клеточную жидкость. Урикозурические препараты (пробенецид, сульфинпиразон) повышают почечную экскрецию уратов.

Ограничение потребления продуктов, богатых пуринами (мясо, рыба, печень, бобы).

Гиперурикемию можно корригировать с помощью аллопуринола, ингибирующего ксантиноксидазу, и тем самым уменьшать син­тез мочевой кислоты. С целью профилактики мочекислой нефропатии прибегают к водным нагрузкам и диуретикам, ощелачива­нию (гидрокарбонат натрия) мочи, чтобы мочевая кислота превра­щалась в растворимый урат натрия, назначению аллопуринола.

Синдром Леша-Нихана встречается редко (1: 800000 новорожденных), наследование идет по сцепленному с полом рецессивному типу.

Болезнь начинает развиваться в грудном возрасте, проявляясь мышечным гипертонусом, повышенной рефлекторной возбудимостью, олигофренией, склонностью ребенка к самоповреждениям. Высокое содержание мочевой кислоты и ее солей (диагностический признак), несмотря на усиленное выделение их с мочой, приводит к формированию камней в мочевыводящих путях, отложению солей мочевой кислоты в суставах.

Нарушение метаболизма металлов

Примером нарушения минерального обмена может служить расстройство обмена меди.

Болезнь Вильсона-Коновалова . Тип наследования - аутосомно-рецессивный. Популяционная частота не установлена.

Соединения меди играют большую роль в обменных процессах. Ионы меди входят в состав многих ферментов митохондрий, участвующих в реакциях окисления. Заболевание чаще проявляется в школьном возрасте. Первыми симптомами могут быть увеличение печени и селезенки, нарушение функции печени, ЦНС, иногда почек, снижение количества эритроцитов, тромбоцитов и лейкоцитов в крови. Поражение печени сопровождается желтухой, рвотой, постепенно развивается цирроз. Поражения ЦНС сопровождаются снижением интеллекта, изменением поведения, дрожанием рук, нарушением глотания, повышением тонуса мышц.

Наследственные заболевания,

Вызванные нарушением развития органов и тканей.

Муковисцидоз . Тип наследования - аутосомно-рецессивный. Популяционная частота заболевания 1:2500 новорожденных. Это одно из самых распространенных наследственных за­болеваний. Муковисцидоз представляет собой множествен­ные поражения желез внешней секреции, проявляющиеся выделением секретов повышенной вязкости, что ведет к застою слизи в органах (легких, поджелудочной железе и кишечни­ке) и развитию воспалительных процессов.

Ахондроплазия . Тип наследования аутосомно-доминантный. Популяционная частота 1:100000. Ахондроплазия-одна из наследственных болезней костной системы. Она обусловлена аномальным ростом и развитием хрящевой ткани чаще всего в эпифизах трубчатых костей и основании черепа, результатом чего является резкое недоразвитие костей в длину. Характерными признаками заболевания являются низкий рост (120-130 см у взрослых) при сохранении нормальной длины туловища, большой череп с выступающим затылком, за­павшая переносица.

Миодистрофия Дюшенна (МД) - тяжелое наслед­ственное заболевание с повышенной активностью в плазме крови ряда мышечных ферментов. Встречается с частотой 1:3500 новорожденных мальчиков. Наследование сцепленное с полом, рецессивное.

Заболевание начинается в возрасте 3-5 лет, нача­ло заболевания: нарастающая слабость в мышцах бедер и таза с постепенным переходом процесса в икроножные мышцы, мышцы верхнего плечевого пояса, спины, живота и др. Появляется утиная походка. Заболевание неуклонно прогрессирует, дети оказываются прикованными к постели с 10-11-летнего возраста. Имеется тенденция к некоторому снижению умственных способностей. Продол­жительность жизни больных 20-35 лет. Смерть обычно наступает от легочной инфекции или сердечной недоста­точности из-за миокардиодистрофии.

На­рушения свертывающей системы крови.

Гемофилия А - тяжелое наследственное забо­левание, обусловленное дефектом VIII фактором свертывания крови. Встречается с частотой 1: 6500 мальчиков. Тип наследования - сцепленный с полом, рецессивный

Заболевание распознается обычно на 2-3-м году жизни, а в тяжелых случаях - при рождении (кровотече­ния из пупочного канатика, под- и внутрикожные крово­излияния). Для заболевания характерен гематомный тип кровоточивости. Преобладают кровоизлияния в крупные суставы конечностей (коленные, локтевые, голеностопные), подкожные, внутри- и межмышечные гематомы, кро­вотечения при травмах и хирургических вмешательствах, наличие крови в моче. Поступление крови в полость сус­тавов приводит к развитию стойкой тугоподвижности из-за остеоартрозов (развитие соединительной ткани в сус­тавах).

Гемофилия В - тяжелое наследственное забо­левание, обусловленное снижением активности IX факто­ра свертывания крови. Популяционная частота не уста­новлена. Тип наследования -. сцепленный с полом, ре­цессивный. Ген картирован Xq27. Клинические проявле­ния заболевания сходны с таковыми при гемофилии А.

Гемоглобинопатии

Наиболее известной формой аномальных гемоглобинов является серповидно-клеточная анемия. У гомозигот эрит­роциты приобретают серповидную форму. Гетерозиготы в обычных условиях клинически здоровы.

Хромосомные болезни человека

Хромосомные болезни - это группа заболеваний, вызываемых изменениями числа (геномные мутации) или структуры (хромосомные аберрации) хромосом, видимы­ми в световой микроскоп.

Хромосомные аномалии могут возникать и в процессе эмбрионального развития при дроблении зиготы.

В основе хромосомных болезней лежат синдромы, свя­занные с нарушением плоидности, изменениями числа хро­мосом или нарушением их структуры.

Хромосомные болезни встречаются довольно часто. Частота хромосом­ных болезней у живорожденных детей составляет при­мерно 2,4 случая на 1000 родившихся. Большинство хромосомных аномалий (полиплоидии, гаплоидии, три­сомий и моносомии по первым парам крупных хромосом) являются несовместимыми с жизнью. Такие эмбрионы или плоды элиминируются из организма матери на ранних или более поздних сроках беременности.

Хромосомные болезни, связанные с аномалиями аутосом

Трисомии

Наиболее часто у человека встречаютсятрисомии по 13-й, 18-й и 21-й паре хромосом.

Синдром Патау (синдром трисомий 13) встреча­ется с частотой 1: 6000.

Дети с синдромом Патау рождаются с массой тела зна­чительно ниже нормы(2500 г). У них наблюдается уме­ренная микроцефалия, недоразвитие различных отделов ЦНС, низкий скошенный лоб; суженные глазные щели, расстояние между которыми уменьшено; микрофтальмия, помутнение роговицы, запавшее переносье, широкое ос­нование носа, широко расположенные и деформирован­ные ушные раковины. Одним из наиболее типичных признаков этого синдрома является двухсторонняя расщелина верхней губы и неба. Отмечаются аномалии опорно-двигательного аппарата (по­лидактилия) и короткая шея. У новорожденных встречаются пороки развития сердца, поджелудочной железы, почки увеличены. Дети с синдромом Патау живут недолго. Все выжившие дети с синдромом Патау-глубокие идиоты.

Синдром Эдвардса (синдром трисомии 18) встре­чается с частотой примерно 1:1000. Дети с трисомией 18 чаще рождаются у пожилых матерей. Для женщин старше 45-ти лет риск родить больного ребенка составляет 0,7%.

Синдром Эдвардса у девочек встречается значительно чаще, чем у мальчиков, что связано, возможно, с большей жизнестойкостью женского организма. Наиболее часто отмечаются аномалии мозгового черепа и лица. Изменяется форма черепа, нижняя челюсть и рот маленькие, глазные щели узкие и короткие. Ушные раковины деформированы, расположены низко; наружный слуховой проход сужен, иногда отсутствует. Грудная клетка широкая и короткая. В 80% случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка). Отмечаются пороки сердца, головного мозга. Продолжительность жизни детей с синдромом Эдвардса невелика: 60% детей умирают до 3 месяцев; до года доживает лишь 1 ребенок из 10. Оставшиеся в живых – глубокие олигофрены.

Синдром Дауна (синдром трисомии 21) - самая частая форма хромосомной патологии у человека: 1:900. Достоверно установлено, что дети с синдромом Дауна чаще рождаются у пожилых родителей. Если возраст отца свыше 48 лет, а матери 41-46 лет, то вероятность рождения больного ребенка с синдромом Дауна возрастает до 4,1%.

Дети с синдромом Дауна рождаются с несколько сниженным весом (3167 г). Для больных характерна округлой формы голова с уплощенным затылком, лоб скошен, узкий, лицо плоское. Типичен эпикаит, плоская спинка носа, косой разрез глазных щелей, свет­лые пятна на радужке, толстые губы, утолщенный язык с глубокими бороздами, выступающий изо рта, маленькие недоразвитые низко расположенные ушные раковины, недоразвитая верхняя челюсть, высокое небо, неправильный рост зубов, короткая шея. Из пороков внутренних органов наиболее типичны пороки сердечно-сосудистой системы и органов. Для детей с синдромом Дауна характерна умственная отсталость

Частичные моносомии

Синдром «кошачьего крика» обусловлен:делецией короткого плеча 5-й хромосомы. Дети с этим синдромом рождаются у родителей обычного возраста. Популяционная частота синдрома примерно 1:45000.

Наиболее характерными для синдрома 5р- являются специфический плач («кошачий крик»), умственное и физическое недоразвитие, микроцефалия, низко расположенные, иногда деформированные ушные раковины, лунообразной формы лицо, эпикант, антимонголоидный разрез глазных щелей, косоглазие и гипотония мышц. Иногда наблюдаются аномалий глаз (атрофия зрительного нерва, очаги депигментации сетчатки). Наиболее постоянный признак синдрома - «кошачий крик» - обусловлен изменениями гортани: сужением, мягкостью хрящей, отечностью или необычной складчатостью слизистой, уменьшением надгортанника. Изменения других органов и систем неспецифичны.

Синдром Орбели обусловлен делецией длинного плеча 13-й хромосомы. Популяционная частота синдрома не установлена.

Дети с синдромом Орбели рождаются с низким весом (2200 г). Клинически этот синдром сопровождается аномалиями развития всех систем органов. Характерна микроцефалия, лоб переходит в нос, не образуя носовой вырезки, эпикант, антимонголоидный разрез глаз, широкая спинка носа, высокое небо, низко расположенные деформированные ушные раковины. Весьма характерны признаки поражения глаз (микрофтальмия, иногда анофтальмия, косоглазие, катаракта), опорно-двигательного аппарата, прямой кишки. Часты пороки развития сердца, почек, головного мозга. Для всех детей с синдромом Орбели характерна глубокая олигофрения, возможны потеря сознания, судороги.

Клиническая генетика. Е.Ф. Давыденкова, И.С. Либерман. Ленинград. «Медицина». 1976 год.

ВЕДУЩИЕ СПЕЦИАЛИСТЫ В ОБЛАСТИ ГЕНЕТИКИ

Амелина Светлана Сергеевна - профессор кафедры по курсу генетики и лабораторной генетики, доктор медицинских наук. Врач генетик высшей квалификационной категории

Дегтерева Елена Валентиновна - ассистент кафедры по курсу генетики и лабораторной генетики, врач-генетик первой категории

Редактор страницы: Крючкова Оксана Александровна

Большой интерес представляет исследование генетических основ широко распространенного обменного заболевания, воз­никающего в результате нарушения метаболизма уратов, - по­дагры. Известно, что подагра часто сочетается с эссенциальной гипертонией, сахарным диабетом, гиперхолестеринемией и ате­росклерозом. Это дает основания для споров между сторонниками полигенного и мономерного наследования этой патологии.

Предполагаются 4 возможных механизма возникновения по­дагры: 1) повышенное поступление пуринов с пищей; 2) повышение их эндогенного образования; 3) дефект выделения с мочой; 4) де­фект экстраренального (через кожу, кишечник) выделения пуринов. McKusick (1968) считает, что, хотя на возникновение подагры влия­ют многие генетические и средовые факторы и хотя уровень моче­вой кислоты сыворотки крови определяется как генетическими, так и негенетическими влияниями, классическая семейная подагра является мономерно наследуемым доминантным заболеванием. Оче­видно, в повышении уровня мочевой кислоты имеет значение как повышенная скорость ее синтеза, так и сниженная скорость выве­дения ее почками. В некоторых семьях с обоими больными роди­телями дети заболевают необычно рано и тяжело, что, вероятно, обусловлено их гомозиготностыо по мутантному гену. В то же время ряд авторов разделяют точку зрения о полигеином наследовании подагры.

Существует также представление, что подагра является высокогетерогенной категорией заболеваний, представляющих со­бой большой биохимический интерес.

Kelley с сотр. (1971), а также ряд других исследователей, нашли, что у некоторых больных подагры имеет место частичная недоста­точность фермента пуринового обмена, необходимого для превра­щения гипоксантина и гуанина в нуклеотиды, гипоксантин-гуанил-фосфорибозил-трансферазы. Этот фермент отличается у боль­ных и гетерозиготных носителей мутантного гена повышенной степенью устойчивости к нагреванию. Это свидетельствует об изменении физических свойств фермента и, следовательно, о структурных изменениях, снижающих энзиматическую актив­ность. Интересно, что недостаточность этого же фермента выявляет­ся при синдроме Lesch - Nyhan, наследуемом рецессивно, сцеплению с Х-хромосомой. У детей с этой патологией наблюдается умственное недоразвитие, спазмирование мышц, насильственное самоповреждение, повышение содержания мочевой кислоты в крови и моче. Последнее обстоятельство является причиной об­разования мочекислых камней с последующим развитием почеч­ной недостаточности.

Нередко у больных развиваются симптомы подагры. Отсюда второе название заболевания; первичная подагра. В эритроцитах и фибробластах больных выявляется резкая недостаточность гипоксантин-фосфорибозил-трансферазы.

Описана повышенная концентрация оксипуринов (гипоксан­тин и ксантин) в цереброспинальной жидкости больных, что поз­воляет предполагать повышенный синтез пуринов в мозгу. В связи с этим допускают возможную роль высокой концентрации окси­пуринов в цереброспинальной жидкости в развитии неврологичес­кого синдрома.

Кроме подагры, к числу наследственных нарушений обмена пуринов и пиримидинов относятся ксантинурия, оротовая аци­дурия и Р-аминоизомасляная ацидурия.

Ксантинурия

Первичным биохимическим дефектом является недостаточ­ность ксантиноксидазы.

Патогенез заболевания связан с блокадой окисления ксантина в мочевую кислоту. Поэтому у больных ксантин, а не мочевая кис­лота является конечным продуктом пуринового обмена. В случаях ксантинурии с повышенным выделением мочевой кислоты, по- видимому, имеет место другой метаболический дефект.

Заболевание наследуется аутосомно-доминантным путем.

Имеющийся метаболический дефект приводит к образованию ксантиновых мочевых камней и обусловливает типичную клини­ческую картину почечнокаменной болезни. В моче больных содер­жится большое количество ксантина при одновременно резком снижении содержания мочевой кислоты в сыворотке крови и в моче. Однако в некоторых случаях ксантинурии у больных выделяет­ся одновременно большое количество мочевой кислоты. Ксантиновые камни редко выявляются рентгенологически. Поэтому диаг­ноз ксантинурии ставится на основании симптомов почечнокамен­ной болезни в сочетании с повышенным содержанием ксантина в моче.

Для лечения применяется диета с ограниченным содержанием пуринов (ограничение мясных продуктов), прием больших коли­честв жидкости и веществ, ощелачивающих мочу.

Оротовая ацидурия

В основе заболевания лежит недостаточность пирофосфорилазы и декарбоксилазы оротидиловой кислоты (соответственно 1,5 и 22% от нормы).

Недостаточность указанных ферментов блокирует превраще­ние оротовой кислоты в уридиловую и цитидиловую кислоты, представляющие собой этапы синтеза пиримидинового кольца. Отсутствие в организме указанных кислот, тормозящих по типу обратной связи синтез оротовой кислоты, обусловливает ее из­быточный синтез.

Описан случай заболевания у пятимесячного мальчика, роди­тели которого состояли в кровном родстве. Заболевание про­явилось клинической картиной тяжелой мегалобластической анемии, сопровождавшейся выделением с мочой большого коли­чества кристаллов оротовой кислоты. У родителей, брата и сестры больного было обнаружено снижение активности пирофосфорилазы и декарбоксилазы оротидиловой кислоты.

У описанного больного диагноз был поставлен на основании обнаружения кристаллов оротовой кислоты в моче.

Улучшения состояния больного удалось добиться с помощью применения гормонов коры надпочечников. Полное излечение на­ступило в результате приема уридиловой и цитидиловой кислот, которые, видимо, по типу отрицательной обратной связи затор­мозили избыточный синтез оротовой кислоты (А. Хорст, 1967).

Отмечается высокая частота гетерозиготности по оротовой ацидурии в населении.

1-аминоизомасляная ацидурия

Первичный биохимический дефект, обусловливающий разви­тие этого заболевания, неизвестен.

В отношении патогенеза (1-аминоизомасляной ацидурии пред­полагают, что повышенное ее выделение может быть обусловлено усиленным распадом ДНК, так как предшественниками 3-аминоизомасляной кислоты являются тимин и валин.

Заболевание наследуется аутосомно-рецессивным путем.

Какая-либо явная клиническая патология при этом метабо­лическом дефекте отсутствует. Некоторые лица ежедневно выде­ляют с мочой 200-300 мг аминоизомасляной кислоты. Процент лиц-выделителей р-аминбизомасляной кислоты довольно высок (10% белого населения США, 30% негров, 40% китайцев и япон­цев).