Главная · Изжога и отрыжка · Процедура отбора проб воды. Методы отбора и анализа проб поверхностных вод. Отбор проб в зависимости от вида проводимого анализа

Процедура отбора проб воды. Методы отбора и анализа проб поверхностных вод. Отбор проб в зависимости от вида проводимого анализа

Обязателен для контроля качества воды. Как правильно провести отбор проб воды по ГОСТ и как провести анализ пробы воды можно узнать в этой статье. Водоподготовка без анализа проб воды будет неэффективной. Любая вода для нашего потребления и наших питомцев является предметом постоянного контроля. Аквариумная вода для рыбок тоже, например, предъявляет немало требований к качеству воды и водоподготовки.

Отбор проб воды питьевой регламентируется международным стандартом ISO 5667 2-3-5. Нет необходимости в какой-либо специальной системе отбора пробы воды, поскольку во всех случаях производится точечный пробоотбор образцов.

В стандартах ISO 5667-2 и ISO 5667-3 описываются различные методики отбора проб воды и типы сосудов, которые следует для этого использовать, а также режимы консервации образцов, отвечающие анализируемому параметру.

При отборе проб воды в природной среде следует соблюдать ряд предосторожностей:

Речная вода: нужно избегать застойных прибрежных зон; отбирать пробы на открытой воде, в зоне течения, используя для этого подходящие средства (высокие сапоги или лодка, чтобы удалиться от берега; мост и т. п.); по мере возможности отбирать пробы воды в различное время года в целях учета сезонных изменений (паводковые воды, пересыхание рек и т. п.);

Озерная вода (природные озера или искусственные водохранилища): необходимо использовать специальные утяжеленные сосуды для глубинного отбора проб; нужно заметить, что эти сосуды могут применяться и для отбора проб на водопроводных станциях (например, для отбора образцов слоя осадка); по мере возможности отбирать пробы на уровне будущего водозабора; в случае применения разно уровневых водозаборных сооружений отбирать пробы на различных уровнях, с тем чтобы определить физико-химический и водорослевый профиль озера или водохранилища в целях выбора уровня водозабора; повторять такую процедуру отбора проб в различное время года для выявления периодов стратификации или начала циркуляции, определения склонности к естественной эвтрофикации и т. п.;

Подземная вода (колодцы или скважины): если сооружение еще не введено в эксплуатацию и даже не оснащено соответствующим оборудованием, следует установить систему пробной откачки и отбирать пробы лишь после того, как будет откачен объем воды, соответствующий такому ее количеству, которое будет отбираться не менее чем за 2 суток работы при проектной производительности; после этого ежедневно отбирать пробы до стабилизации результатов;

Водопроводная вода (скважина, водопроводная станция, водопроводная сеть): для отбора пробы воды нужно открыть водопроводный кран и спускать воду до полной замены всего объема, содержащейся в месте отбора проб, и до стабилизации качества воды; по возможности постоянно держать открытым кран для отбора проб воды исходной или обрабатываемой. Выбор процедуры водоподготовки и марки ионообменной смолы, например КАТИОНИТ КУ-2-8, будет зависеть от грамотно проведенных анализов проб.

Анализ проб воды является необходимой процедурой на всех этапах создания промышленного сооружения, от его проектирования до практической реализации и эксплуатации. Обычно выполняется:

Анализ проб исходных вод или сточных вод, подлежащих обработке;

Анализ проб воды, отбираемых при приемке сооружения, позволяющий проверить его технические характеристики;

Анализ проб воды, отбираемых в процессе эксплуатации сооружения, удостоверяющий соблюдение норм в любой момент времени. От проведенного анализа зависит выбор ионообменного материала: технического или особо чистого, как АНИОНИТ АВ-17-8чС

Сфера применения анализа проб воды быстро расширяется в результате:

Появления методов и методик, обеспечивающих большую скорость действия и более высокую эффективность;

Исследований, показавших целесообразность и возможность определения очень малых количеств различных компонентов:

Пределы измерений в этом смысле, что электронной промышленности требуется вода с минимальным содержанием металлов, концентрация которых в настоящее время должна поддерживаться на уровне 1 мг на 1.000 кубометров. Уже сегодня существуют средства, позволяющие контролировать подобный уровень содержания примесей;

Стандарты ЕЭС на питьевую воду требуют удаления пестицидов до уровня 0,1 мкг/л.

Основные понятия, позволяющие определить эффективность аналитической методики в отношении контроля пробы воды:

Точность анализа проб воды - отклонение среднего значения полученных результатов от истинного значения; она зависит от систематических ошибок (помехи, пробоотбор, эталонирование и т. п.);

Надежность анализа проб воды, оцениваемая двумя показателями: повторяемость (одни и те же условия, один оператор) и воспроизводимость (одни и те же условия, различные операторы). Статистическое выражение этих отклонений дается стандартным отклонением. Повторяемость или воспроизводимость методики можно оценить в ходе межлабораторных анализов, когда аликвоты одной и той же пробы анализируются различными операторами и/или различными лабораториями;- чувствительность анализов пробы воды, определяемая величиной получаемого отклонения по сравнению с измеряемой величиной;- предел определения анализа проб воды - минимальная концентрация, которую можно определить с вероятностью 95 %. Для всех спектрометрических измерений пределом измерения элемента является концентрация, отвечающая удвоенной интенсивности сигнала фонового шума измерительного прибора.

Более углубленные методы статистической обработки результатов позволяют бороться с систематическими ошибками, помогают выбрать метод анализа, разработать методику отбора проб (точки и частота пробоотбора) и т. п.

Правила отбора проб воды достаточно просты, ведь в большинстве случаев для отбора проб воды допускается использование пластиковых емкостей. Однако для анализа некоторых показателей правилами отбора пробы воды рекомендуется применять стеклянную тару. Сосуды должны быть чистыми, причем предпочтение отдается одноразовой посуде; однако наиболее простым решением будет заказ надлежащим образом подготовленной тары (с уже внесенными необходимыми консервантами) в лаборатории, проводящей соответствующие анализы.

Правилами отбора проб воды нормируется, что пробы, предназначенные для бактериологического анализа питьевой воды, отбирают в стерильную тару, содержащую тиосульфат натрия, который нейтрализует хлор; эти сосуды следует открывать только в момент отбора проб.

Правилами отбора проб воды подразумевается несколько способов заполнения сосудов пробами воды для анализа:

При отборе проб питьевой воды, предназначаемых для бактериологического анализа, нужно стерилизовать огнем точку пробоотбора (кран, отвод) и перед отбором пробы спускать воду с постоянным расходом в течение 2 мин под защитой пламени. В сосуде должен присутствовать воздух, и по этой причине его не следует заполнять полностью;

При использовании тары, содержащей различные добавки (кислота, реагенты, АНИОНИТ АВ-17-8), необходимо следить за тем, чтобы при ее заполнении не произошло перелива; полного заполнения сосуда правилами отбора проб воды не требуется.

При отборе проб сточной воды следует руководствоваться международным стандартом ISO 5667-10. Учитывая переменный состав вод, в большинстве случаев следует отбирать смешанные или пропорциональные пробы. При очистке сточных вод объем пробы должен быть всегда пропорционален расходу.

В большинстве случаев для реализации этого условия требуется применение специального оборудования: передвижных или стационарных пробоотборников.Все автоматические пробоотборники, используемые для отбора проб сточных или производственных вод, состоят из следующих основных компонентов:

Защитная сетка, предотвращающая забивание всасывающей трубы;

Всасывающая труба, имеющая диаметр 10-15 мм и обладающая стойкостью на износ и на сжатие;

Насос вакуумного или перистальтического типа;

Делитель проб с опорожнением под действием силы тяжести;

Сосуды для отбора проб количеством от 1 до 24 (по необходимости);

Программирующее устройство, содержащее одну или несколько рабочих программ с функцией задержки запуска и функцией промывки всасывающей трубы перед отбором каждой пробы и после него;

Блок электропитания с легко перезаряжаемым герметичным внутренним аккумулятором;

Водонепроницаемый корпус для переносных приборов. Корпус стационарных приборов должен охлаждаться до 4 °С.

Если установка оснащена несколькими расходомерами, каждый пробоотборник должен быть связан с соответствующим правилам отбора проб воды расходомером. Если же расходомер отсутствует, отбирают пробы пропорционально времени (например, одну пробу через каждые 15 мин, отбирая по четыре пробы в каждый сосуд пробоотборника, содержащего 24 сосуда для взятия проб). После этого в отдельной емкости воспроизводят образец, пропорциональный расходу, используя регистрационную запись времени работы насоса пробоотборника (как минимум, необходимо иметь почасовые сведения о работе насоса).

Выбор точки пробоотбора является основополагающим для репрезентативности отбираемой пробы.В случае стационарных установок при выборе точек пробоотбора рекомендуется, прежде всего, обращать внимание на чисто практические моменты их размещения (удобство доступа в процессе отбора пробы, близость линий электроснабжения и т. п.) и лишь после этого окончательно определять наиболее удобное и надежное место для ручного или автоматического отбора образцов.

На водоочистных станциях при водоподготовке правильный выбор точки отбора проб исходной воды имеет первостепенное значение. Правила отбора проб воды предписывают, что проботбор должен осуществляться в зоне значительной турбулентности воды (однородный поток), расположенной выше точки рециркуляции любого технологического водного потока в начало процесса.

Обеспечение высочайшей санитарной надежности источника (в основу выбора источника положена оценка и прогноз вероятности его загрязнения).

Выбор источника для централизованного хозяйственно-питьевого водоснаб­жения осуществляется в таком порядке: 1) межпластовые напорные (артезиан­ские); 2) межпластовые ненапорные; 3) грунтовые воды, которые искусственно пополняются; 4) поверхностные воды (реки, водохранилища , озера, каналы).

При выборе источника учитывают достаточность запасов воды для удовлетворения всех нужд населенного пункта, определяют места водозабора и оценивают возможность организации зон санитарной охраны.

Гигиенические принципы, положенные в основу выбора источника водоснабжения , требования к качеству воды в подземных и поверхностных источниках, порядок осуществления выбора отражены в ГОСТ 2761-84 „Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора” (приложение 4).

Приложение 2

Методика санитарного обследования источников водоснабжения

Санитарное обследование включает три основные позиции:

Санитарно-топографическое обследование его окружения;

Санитарно-техническое обследование состояния оборудования источника воды.

Санитарно-эпидемиологическое обследование района размещения источника воды;

Основная задача санитарно-топографического обследования источника воды состоит в выяснении возможных источников загрязнения воды (свалки, помойные ямы, туалеты, животноводческие фермы, кладбища и т. п.), установлении расстояния от них к источнику воды. В определении рельефа местности (направление стока дождевых, талых вод к источнику воды или в другую сторону), направление течения грунтовых вод, паводков. На основании санитарно-топографического обследования составляется карта-схема взаиморасположения источника воды и перечисленных объектов, с отметкой расстояний и направления уклона местности.

В сомнительных случаях связь источника воды с источником загрязнения может быть установлена исследовательским путем. В источник загрязнения вливают насыщенный раствор хлорида натрия из расчета не меньше одного ведра на каждые 10 м расстояния к источнику воды, или раствор флуоресцеина и каждые 3-4 часа на протяжении одного - двух дней определяют в источнике воды содержание хлоридов (или флуоресценцию).

Санитарно-техническое обследование водоисточника ставит целью выя­снить состояние технического оборудования источника воды, например, наличие в шахтном колодце - сруба, “глиняного замка”, отмостки, навеса, средства подъе­ма воды; насосов у артезианских скважин, их состояние, необходимость ремонта и др. Наличие подъездов и средств водозабора из поверхностных водоемов - водозаборного ковша, берегового водоприемного колодца. При централизованном водоснабжении оценивается санитарно-техническое состояние головных сооружений водопровода , водопроводной сети и сооружений на ней (в частности, водоразборных колонок).

Важное практическое значение имеет определение количества воды в источнике воды и его дебит (производительность). Например, в колодце со срубом из бетонных колец количество воды определяют по формуле:

где: V – количество воды в колодце, м3;

R - радиус кольца сруба, м;

h - толщина слоя воды, м.

Высоту слоя воды определяют шпагатным шнуром с грузом, который опускают до ощущения дна и измерения мокрой части шнура.

Для определения дебита колодца из него выкачивают (или вычерпывают) 30-40 ведер воды, отмечают, на сколько снизился уровень воды и определяют время, на протяжении которого восстановится предыдущий уровень воды. Дебит рассчитывают по формуле:

D = Вирус" href="/text/category/virus/" rel="bookmark">вирусного гепатита и т. п.);

Наличие эпизоотий среди грызунов, домашних животных (туляремии, бруцеллеза, сибирской язвы, ящура, коровьего бешенства и т. п.);

санитарное состояние населенного пункта (загрязнение территории, способы сбора и обезвреживания жидких и твердых бытовых и промышленных отходов и прочее).

Приложение 3

МЕТОДИКА ОТБОРА ПРОБ ВОДЫ ДЛЯ ЛАБОРАТОРНЫХ АНАЛИЗОВ

При отборе проб воды из поверхностного водоема, или шахтного колодца измеряют ее температуру с помощью специального термометра (рис. 16.1.) или обычного химического термометра, резервуар которого обернут марлевым бинтом в несколько слоев. Температуру определяют непосредственно в источнике воды. Термометр опускают в воду на 5-8 мин., затем быстро вытягивают и снимают показатели температуры воды.

Рис. 16.1. Термометр для измерения температуры воды в водоемах, колодцах (а), батометры для отбора проб воды на анализ (б).

Отбор проб воды из поверхностных водоемов и колодцев проводится с помощью батометров разных конструкций, которые обеспечиваются двойным шпагатом: для опускания прибора к заданной глубине и для открывания пробки сосуда на этой глубине (рис. 16.1-б).

Для отбора проб воды из проточных водоемов (река, ручей) сконструирован батометр со стабилизатором, который направляет горловину сосуда против течения.

Пробу воды из водопроводного крана или оборудованного каптажа отбирают:

Для бактериологического анализа, после предварительного прожигания выходного отверстия крана или каптажа спиртовым факелом, спускания воды из крана на протяжении не менее 10 минут, в стерильную бутылку емкостью 0,5 л, с ватно-марлевой пробкой, обернутую сверху бумажным колпаком. Чтобы не замочить ватно-марлевую пробку, бутылку заполняют примерно на три четверти с тем, чтобы под пробкой осталось 5-6 см воздушного пространства. Посуду с ватно-марлевой пробкой заранее стерилизуют в сушильном шкафу при 1600 С в течение часа;

Для короткого санитарно-химического анализа (органолептические показатели, основные показатели химического состава и показатели загрязнения воды) отбирают до одного литра в химически-чистую посуду, предварительно сполоснув ее отбираемой водой (для полного санитарно-химического анализа отбирают 3-5 л воды).

Во время отбора пробы составляют сопроводительное письмо, в котором отмечают: вид, наименование, место нахождения, адрес источника воды (поверхностного водоема, артезианской буровой скважины, шахтного колодца, каптажа, водопроводного крана, водоразборной колонки); его краткую характеристику; состояние погоды во время отбора пробы и на протяжении предыдущих 10 дней; причина и цель отбора проб (плановое обследование, неблагоприятная эпидемическая ситуация, жалобы населения на ухудшение органолептических свойств воды); лаборатория, куда направляется проба; отмечается необходимый объем исследований (краткий, полный санитарно-химический анализ, бактериологический анализ, определение патогенных микроорганизмов); дату и время отбора пробы; результаты исследований, выполненных во время отбора пробы (температура); кем отобрана проба (фамилия, должность, учреждение); подпись должностного лица, отобравшего эту пробу.

Пробы доставляются в лабораторию как можно быстрее. Бактериологиче­ские исследования должны быть начаты на протяжении 2 часов после отбора пробы или при условии хранения в холодильнике при температуре 1-8°С – не позднее, чем через 6 часов. Физико-химический анализ проводят на протяжении 4 часов после взятия пробы или при условии хранения в холодильнике при 1-8°С – не позднее, чем через 48 часов. При невозможности проведения исследований в указанные сроки пробы должны быть законсервированы (кроме проб для физико-органолептических и бактериологических исследований, а также определения БПК, которые обязательно осуществляют в приведенные выше сроки). Консерви­руют пробы 25 % раствором H2SO4 из расчета 2 мл на 1 л воды или другим способом в зависимости от показателей, которые будут определяться.

К отобранной пробе прилагают сопроводительный бланк, в котором указывают адрес, вид источника воды, куда направляется проба, цель анализа, дату и время отбора пробы, подпись должностного лица, отбиравшего эту пробу.

Приложение 4

Извлечение из ГОСТа 2761-84

“Источники централизованного хозяйственно-питьевого водоснабжения.

Гигиенические, технические требования и правила выбора”

Состав воды пресноводных подземных и поверхностных источников должен отвечать таким требованиям:

Сухой остаток - не больше 1000 мг/л (по согласованию с СЭС не больше 1500 мг/л);

Хлоридов - не больше 350 мг/л;

Сульфатов - не больше 500 мг/л;

Общая жесткость - не больше 7 мг/экв/л (по согласованию с СЭС не больше 10 мг-экв/л);

Химические вещества - не больше ПДК для воды водоемов хозяйственно-питьевого и культурно-бытового водопользования, а также норм радиационной безопасности, утвержденных Министерством здравоохранения Украины;

При условии одновременного присутствия в воде токсичных химических веществ, способных при комбинированном действии к суммации отрицательных эффектов, необходимо придерживаться правила суммационной токсичности;

где: С1, С2, Сn – фактические концентрации химических веществ в воде, мг/л.

В зависимости от качества воды и методов водоподготовки, необходимых для получения доброкачественной питьевой воды , подземные и поверхностные источники разделены на три класса.

В проведении мониторинга вод различной природы и различного назначения можно выделить следующие этапы:

1. Отбор пробы;

2. Пробоподготовка;

3. Обнаружение и идентификация ожидаемых компонентов;

4. Измерение концентрации найденных компонентов.

Отбор пробы

Основные принципы, которые необходимо соблюдать при отборе проб:

1. Проба воды должна отражать условия и место ее отбора;

2. Отбор, хранение, транспортировка и работа с пробой должны проводиться так, чтобы не произошло изменений в содержании определяемых компонентов или в свойствах воды;

3. Объем пробы должен быть достаточным и должен соответствовать применяемой методике анализа.

Место для отбора пробы выбирают в соответствии с целями анализа и с учетом всех обстоятельств, которые могли бы оказать влияние на состав взятой пробы.

Так, при отборе проб поверхностных и подземных вод необходимо внимательно обследовать все источники поступления воды в водоем, выявить возможные источники загрязнения водоема. Место для отбора проб сточных вод выбирают только после подробного ознакомления с технологией производства, расположением цехов, системой канализации, назначением и работой отдельных элементов станции очистки и т.д.

В соответствии с целями анализа проводят разовый или серийный отбор проб. При разовом отборе пробу берут один раз в определенном месте и рассматривают результаты одного анализа. Этот способ применяется в редких случаях, когда результатов единичного анализа достаточно для суждения о качестве исследуемой воды (например, при постоянстве состава воды, как это наблюдается для глубинных грунтовых вод). В большинстве случаев состав воды изменяется в зависимости от места и времени отбора пробы, в этих случаях проводят серийный отбор проб. При анализе серии взятых проб определяется изменение содержания отдельных компонентов с учетом места, времени отбора или обоих этих факторов. Полученные результаты обрабатываются статистически.

Типичным примером серийного отбора проб является зональный отбор. Пробы отбирают с различной глубины по выбранному створу водохранилища, озера, пруда и т.д. Другой распространенный тип серийного отбора проб - отбор через определенные промежутки времени. Позволяющий следить за изменением качества воды во времени или же в зависимости от ее расхода. При этом можно получить сведения о сезонных или дневных изменениях качества воды.

Различают два основных вида проб: простую и смешанную. Простую пробу получают путем однократного отбора всего требуемого количества воды. Анализ простой пробы дает сведения о составе воды в данный момент в данном месте. Смешанную пробу получают, сливая простые пробы, взятые в одном и том же месте через определенные промежутки времени или отобранные одновременно в различных местах обследуемого объекта. Эта проба характеризует средний состав воды исследуемого объекта или средний состав за определенный период времени (за час, смену, день и т.д.), или, наконец, средний состав с учетом как места, так и времени. Смешанную пробу нельзя отбирать за период больше одних суток. При необходимости более длительного хранения пробу консервируют. Смешанную пробу нельзя использовать для определения тех компонентов и характеристик воды, которые легко изменяются со временем (растворенные газы, pH и т.д.). Эти определения проводят в каждой составляющей пробы отдельно.

Количество пробы, которое необходимо отобрать, зависит от числа определяемых компонентов. Чаще всего, это 1-2л воды.

В качестве сосудов для отбора и хранения проб обычно используют бутыли из химически стойкого стекла. Закрывают их резиновыми или стеклянными притертыми пробками. В специальных случаях используют полиэтиленовые бутыли или термосы. Посуда должна быть тщательно вымыта, обезжирена и высушена.

После отбора проб делается запись, в которой указывают вид и происхождение воды, точное место, день и час отбора, способ консервирования.

Если анализ воды проводится не на месте отбора пробы или не в тот же день в лаборатории, то пробу консервируют. Необходимость консервирования обусловлена тем, что некоторые характеристики воды при хранении изменяются (температура, pH, содержание различных газов; некоторые вещества могут выпасть в осадок, другие, наоборот, раствориться и т.д.). В неконсервированной пробе могут также протекать различные биохимические процессы, вызванные деятельностью микроорганизмов или планктона. Универсального консервирующего средства не существует. Для полного анализа воды следует отобрать пробу в несколько бутылей, в которые добавляют различные консервирующие вещества. Пробы для определения всех видов связанного азота, окисляемости, пиридина консервируют, прибавляя к ним серную кислоту, при определении взвешенных частиц и сухого остатка добавляют к пробам хлороформ, для определения фенолов - пробы подщелачивают и т.д. Довольно затруднительным является консервирование сточных вод, особенно при наличии в пробе нерастворимых веществ, т.к. консервирующее вещество может оказать мешающее действие. Консервирование сточных вод химическими реагентами проводят лишь в тех случаях, когда консервирующий реагент не мешает определению компонентов анализируемой воды и если невозможно провести определение сразу после отбора проб.

Пробоподготовка

Подготовка пробы обычно является обязательной стадией в анализе воды. Лишь в исключительных случаях удается избежать этого и использовать прямой ввод пробы (например, при определении в питьевой воде тригалометанов методом капиллярной газовой хроматографии с электронно-захватным детектором или полиядерных ароматических углеводородов методом высокоэффективной жидкостной хроматографии с флуоресцентным детектированием).

Слишком разбавленные или сложные по составу образцы приходится подвергать ряду специфических процедур, чтобы сделать возможным их исследование на имеющейся аналитической аппаратуре и достичь эффективного разделения и детектирования. Подготовка пробы может ограничиваться только концентрированием исходного образца, а может включать также и фракционирование содержащихся в пробе компонентов. Для концентрирования пробы и разделения ее на фракции могут применяются выпаривание, отгонка, дистилляция, вымораживание, осаждение и соосаждение, экстракция, сорбция, хроматография и другие методы.

Выпаривание воды является самым простым и доступным способом концентрирования. Концентрации растворенных веществ можно увеличить при этом в 10-1000 раз. Однако метод не лишен довольно существенных недостатков:

1. При выпаривании концентрируются не только определяемые в воде микрокомпоненты, но и макрокомпоненты, которые при высоких концентрациях обычно мешают определению;

2. При значительном концентрировании выпариванием нередко выпадают осадки, отделение которых фильтрованием может привести к потере определяемых компонентов проб;

3. Если определяемые вещества летучи, то при выпаривании может произойти частичное или даже полное удаление их из пробы;

4. При выпаривании возможно загрязнение пробы веществами, извлекаемыми из материала посуды.

Значительно эффективнее можно использовать выпаривание после экстракции (выпаривание экстрагента). Увеличение концентрации определяемого вещества в этом случае будет равно произведению результатов обоих процессов - экстракции и выпаривания. Кроме того, при этом отделяются все неэкстрагируемые примеси.

Методом отгонки микрокомпонентов (при атмосферном давлении или в вакууме) концентрируют летучие вещества (аммиак, летучие фенолы, летучие кислоты и др.), а также неопределяемые компоненты, которые можно превратить в летучие вещества (например, фтор в виде SiF 4 , цианиды в виде HCN). При отгонке следует всегда учитывать возможность разложения отделяемого соединения и неполноту его отгонки.

Концентрирование примесей вымораживанием основано на том, что при замерзании части водного раствора растворенные компоненты остаются в жидкой фазе. Этот метод применяют для концентрирования веществ, обладающих достаточной растворимостью в воде при низких температурах, и в особенности гидрофильных веществ, трудно извлекаемых из воды другими методами. К преимуществам метода относятся:

1. Незначительные потери летучих соединений;

2. Отсутствие загрязнения применяемыми реактивами;

3. Значительно меньшая опасность изменения компонентного состава исследуемой воды вследствие протекания каких-либо превращений определяемых веществ.

Основными факторами, определяющими эффективность процесса вымораживания, являются скорость нарастания льда, возможность отвода веществ из зоны раствора, прилегающей к намерзающему льду, и структура получаемого льда.

Возможны различные варианты проведения процесса, из которых чаще всего используют следующие:

1. В простейшем случае анализируемую воду помещают в конусообразный сосуд, расширяющийся кверху. Вымораживают основную массу воды в морозильной камере при температуре -12 0 С или в бане с охлаждающей смесью. Способ очень прост, однако здесь практически нет возможности влиять на параметры, определяющие эффективность процесса;

2. По Бейкеру, исследуемую воду помещают в круглодонную колбу, емкость которой должна в 4-5 раз превышать объем пробы. Колбу с пробой погружают под углом 60 0 в охлаждающую смесь с температурой -12 0 С и вращают с частотой 80 оборотов/мин. При необходимости можно варьировать температуру вымораживания и частоту вращения, влияя таким образом на скорость намерзания льда и быстроту отделения от поверхности льда слоя воды, более концентрированного чем остальной раствор. Вымораживание по Бейкеру проводят до замерзания приблизительно 9/10 раствора. Хладоагентами могут быть солевой раствор, фенолы, жидкий аммиак и др.;

3. Оригинальным вариантом вымораживания является так называемый метод направленной кристаллизации. Он осуществляется на специальной установке, обеспечивающей постепенное погружение пробирок с исследуемой водой в охлаждающую смесь при постоянном и достаточно интенсивном перемешивании жидкой фазы около границы лед-вода. Нарастание кристалла льда здесь происходит снизу вверх. Метод позволяет максимально варьировать условия эксперимента и влиять таким образом на эффективность процесса.

Существенным ограничением метода вымораживания является резкое падение эффективности при анализе систем с высоким солевым фоном. При этом получают только 10-12-кратное обогащение. Уменьшение эффективности концентрирования наблюдается при этом в явной мере для всех компонентов раствора. Оно связано с нарушением структуры льда и захватом уже сконцентрированной фазы намерзающими кристаллами.

Соосаждение является одним из самых эффективных методов концентрирования при определении неорганических веществ. Таким способом часто выделяют очень малые (следовые) количества определяемого металла из большого объема сточной воды. Для этого вводят в достаточном количестве соль другого металла (макрокомпонент, носитель, коллектор) и осаждают этот металл подходящим реагентом. Образующийся осадок увлекает с собой и микрокомпоненты - определяемый металл. Выпавший осадок растворяют в возможно меньшем объеме необходимого растворителя и анализируют полученный концентрат. Методом соосаждения можно достигнуть повышения концентрации в десятки тысяч раз.

Одним из важнейших методов, применяемых для концентрирования неорганических и органических веществ, является экстракция. Наиболее часто используемая при анализе воды жидкостно-жидкостная экстракция может проводиться встряхиванием анализируемого образца с органическим раствором в делительной воронке или автоматически, при использовании экстрактора непрерывного действия. В зависимости от условий проведения процесса экстракты могут содержать малолетучие загрязнители средней и малой полярности (универсальная экстракция малолетучих веществ), кислоты или основания (селективная экстракция при соответствующих значениях рН).

К недостаткам метода жидкостно-жидкостной экстракции следует отнести следующие:

1. Процесс экстрагирования может отнимать много времени;

2. Зачастую используются токсичные растворители;

3. Разделение органической и водной фаз часто затруднено образованием устойчивой эмульсии (особенно в ручной экстракции).

Обычно объем получаемого экстракта довольно велик, поэтому в некоторых случаях (например, при использовании для анализа воды хроматографических методов) необходима дополнительная операция - выпаривание и концентрирование.

К применяемым в методе экстракции экстрагентам предъявляют следующие требования:

1. Экстрагент должен обладать хорошей способностью извлекать одно определяемое вещество или группу веществ;

2. Он должен отличаться малой растворимостью в воде;

3. Желательно, чтобы экстрагент имел достаточно высокую температуру кипения (не ниже 50 ° С);

4. Плотность экстрагента должна как можно больше отличаться от плотности анализируемого раствора;

5. Экстрагент не должен взаимодействовать с компонентами анализируемого раствора;

6. Он должен быть чистым и легко регенерироваться в лабораторных условиях.

При выборе наиболее подходящего экстрагента используют справочные данные по коэффициентам распределения, по растворимости соединений в воде и в различных органических растворителях. Можно также ориентироваться на химическое сродство экстрагируемого вещества и экстрагента.

В последнее время широко используется также твердофазная экстракция, основанная на разделении и концентрировании в результате сорбционных или ионообменных процессов. Этот способ пригоден для извлечения из воды соединений как малой и средней, так и высокой полярности (в зависимости от характеристик используемого сорбента). Пробы большого объема могут быть обработаны с использованием достаточно малых количеств твердой фазы, что в свою очередь требует малого объема растворителя для последующей десорбции сконцентрированных соединений. Это снимает необходимость дополнительного выпаривания и существенно уменьшает риск загрязнения образца. Метод является значительно более экспрессным по сравнению с классическими методами выделения и концентрирования.

В зависимости от объема пробы воды и характера анализируемого вещества процесс может быть проведен либо на картридже (патроне, заполненном сорбентом), либо на мембранных дисках. Применение высокоэффективных картриджей часто позволяет проводить полное выделение большого числа загрязнителей. Процесс легко автоматизировать.

Особенно удачным является применение метода твердофазной экстракции для выделения и концентрирования полярных веществ. Загрязнители улавливают и предварительно концентрируют на крупносетчатых пористых синтетических сорбентах, называемых смолами (например, амберлит-ХАД), которые затем высушивают, промывают дихлорметаном и полученный элюат используют для анализа (при необходимости концентрируют его). Элюирование растворителем иногда заменяют термической десорбцией, при этом обеспечивается наиболее высокая степень обогащения пробы. Ограничение метода связано с недостаточно высокой термической стабильностью полимерных сорбентов, что существенно сужает область его применения.

Еще одним методом выделения и одновременного концентрирования является продувка с последующим улавливанием. Этот метод используют главным образом для анализа неполярных летучих органических соединений перед их хроматографическим определением. Продуваемый через пробу воды инертный газ захватывает летучие органические соединения, которые затем улавливаются на таких адсорбентах, как тенакс или активный уголь и (или) конденсируют в криогенной ловушке. Ловушка с адсорбентом обычно встроена в десорбционную камеру, снабженную мощным нагревательным устройством, которое обеспечивает десорбцию сконцентрированных веществ. Эта методика имеет существенные достоинства, поскольку позволяет выделить "чистую" пробу из грязной воды. Устройство для стриппинга может быть легко смонтировано на газовом хроматографе с подключенными последовательно детекторами электронно-захватным, пламенно-ионизационным, фотоионизационным с десорбцией через замкнутую петлю или с масс-спектрометрическим детектированием. С помощью такой методики могут быть проанализированы загрязнители в питьевой воде при очень низких концентрациях - на уровне мкг/л или даже нг/л.

При определении летучих веществ можно использовать для целей концентрирования также парофазный анализ. Его применяют в двух вариантах: статическом и динамическом. В статическом варианте пробу воды помещают в специальный сосуд, плотно закрывают и термостатируют для того, чтобы перевести летучие компоненты в газовую фазу. Анализ полученной газовой фазы проводят с помощью метода хроматографии с использованием насадочных или капиллярных колонок. Проба отбирается после установления равновесия между газовой и жидкой фазой.

Для увеличения чувствительности применяют динамический вариант парофазного анализа. В этом случае фазовое равновесие постоянно нарушается вследствие продувки сосуда с образцом инертным газом. Выдуваемые компоненты собирают на адсорбенте (например, на тенаксе) или улавливают в криогенной ловушке и после десорбции вводят в газовый хроматограф. Статический вариант парофазного анализа позволяет определять летучие примеси на уровне мкг/мл, динамический - на уровне мкг/л. Предварительная обработка пробы (высаливание примесей сульфатом натрия или изменение рН пробы) часто увеличивает чувствительность и воспроизводимость результатов анализа.

Методы анализа

Загрязнители обычно присутствуют в воде на уровне следов в диапазоне от 1 мкг/л до 1 нг/л. Пределы обнаружения большинства методов близки к значениям предельно допустимых концентраций, поэтому для определения примесей требуется самая высокая чувствительность аналитических приборов. Задача выбора оптимальной аналитической методики и прибора в мониторинге решается с учетом типа определяемых веществ и требуемых пределов обнаружения.

Методы анализа, используемые в современных лабораториях, занимающихся контролем окружающей среды, включают:

1. Различные варианты оптических методов анализа (например, спектрофотометрия в видимой УФ- и ИК-областях, атомно-абсорбционная и эмиссионная спектрометрия);

2. Хроматографические методы (газовая, жидкостная, сверхкритическая);

3. Электроаналитические методы (вольтамперометрия, ионометрия и другие).

Ни один из перечисленных методов не является универсальным, некоторые из них пригодны для определения только органических веществ, другие - неорганических.

Оптические методы, в частности, классические фотометрические и спектрофотометрические методы, основанные на образовании определяемыми компонентами окрашенных соединений с разнообразными реагентами, издавна и широко применяются для целей мониторинга окружающей среды. В последние десятилетия все большее значение приобретают также атомно-абсорбционная и эмиссионная (флуоресцентная) спектрометрия, методы, позволяющие определить большое число химических элементов в неорганических матрицах с крайне низкими пределами обнаружения (при абсолютных содержаниях приблизительно 10 -14 нг). Повышению чувствительности определений этими методами способствуют простейшая предварительная пробоподготовка или концентрирование (экстракция, упаривание проб воды и т.п.).

Хроматографические методы часто оказываются незаменимыми для идентификации и количественного определения органических веществ со сходной структурой. При этом наиболее широко используемыми для рутинных анализов загрязнителей окружающей среды являются газовая и высокоэффективная жидкостная хроматография. Газохроматографический анализ органических загрязнителей в питьевой и сточных водах сначала основывался на использовании насадочных колонок, позднее распространение получили и кварцевые капиллярные колонки. Внутренний диаметр капиллярных колонок составляет обычно 0,20-0,75 мм, длина - 30-105 м. Оптимальные результаты при анализе загрязнителей в воде достигаются чаще всего при использовании капиллярных колонок с различной толщиной пленки из метилфенилсиликонов с содержанием фенильных групп 5 и 50%. Уязвимым местом хроматографических методик с использованием капиллярных колонок часто становится система ввода пробы. Системы ввода пробы можно подразделить на две группы: универсальные и селективные. К универсальным относятся системы ввода с делением и без деления потока, “холодный” ввод в колонку и испарение при программировании температуры. При селективном вводе используют продувку с промежуточным улавливанием в ловушке, парофазный анализ и т.д. При использовании универсальных систем ввода в колонку поступает вся проба полностью, при селективной инжекции вводится только определенная фракция. Результаты, получаемые при селективном вводе, являются существенно более точными, поскольку попавшая в колонку фракция содержит только летучие вещества, и техника при этом может быть полностью автоматизирована.

Газохроматографические детекторы, используемые в мониторинге загрязнителей, часто подразделяют на универсальные, откликающиеся на каждый компонент в подвижной фазе, и селективные, реагирующие на присутствие в подвижной фазе определенной группы веществ со сходными химическими характеристиками. К универсальным относятся пламенно-ионизационный, атомно-эмиссионный, масс-спектрометрический детекторы и инфракрасная спектрометрия. Селективными детекторами, используемыми в анализе воды, являются электронно-захватный (селективен к веществам, содержащим атомы галогенов), термоионный (селективен к азот- и фосфорсодержащим соединениям), фотоионизационный (селективен к ароматическим углеводородам), детектор по электролитической проводимости (селективен к соединениям, содержащим атомы галогенов, серы и азота). Минимально детектируемые количества веществ - от нанограммов до пикограммов в секунду.

Высокоэффективная жидкостная хроматография (ВЭЖХ) является идеальным методом для определения большого числа термически неустойчивых соединений, которые не могут быть проанализированы с помощью газовой хроматографии. Объектами анализа методом жидкостной хроматографии в настоящее время часто становятся современные агрохимикаты, в число которых входят метилкарбонаты и фосфорорганические инсектициды, другие нелетучие вещества. Высокоэффективная жидкостная хроматография получает все большее распространение среди других методов, применяемых в мониторинге окружающей среды, еще и потому, что имеет блестящие перспективы в плане автоматизации пробоподготовки.

Колонки для ВЭЖХ, которые чаще всего используют в анализах загрязнителей окружающей среды, имеют длину 25 см и внутренний диаметр 4,6 мм, заполняются они сферическими частицами силикагеля размером 5-10 мкм с привитыми октадецильными группами. В последние годы появились колонки с меньшим внутренним диаметром, заполненными частицами меньшего размера. Использование таких колонок приводит к уменьшению расхода растворителей и продолжительности анализа, увеличению чувствительности и эффективности разделения, а также облегчает проблему подключения колонок к спектральным детекторам. Колонки с внутренним диаметром 3,1 мм снабжают предохранительным картриджем (форколонкой) для увеличения срока службы и улучшения воспроизводимости анализов.

В качестве детекторов в современных приборах для ВЭЖХ используются обычно УФ-детектор на диодной матрице, флуоресцентный и электрохимический.

Электроаналитические методы, которые обычно применяют в анализе воды для определения неорганических компонентов, часто уступают по чувствительности методам газовой и жидкостной хроматографии, атомно-адсорбционной спектрометрии. Однако здесь используется более дешевая аппаратура, иногда даже в полевых условиях. Основными электроаналитическими методами, применяемыми в анализе воды, являются вольтамперометрия, потенциометрия и кондуктометрия. Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью - приблизительно 10 -9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. На принципе использования метода ИЭА или сочетания ИЭА с ДИП работают полностью автоматизированные станции мониторинга. Методы ДИП и ИЭА в прямом варианте, а также в сочетании друг с другом используют для анализа загрязненности воды ионами тяжелых металлов, различными органическими веществами. При этом часто способы пробоподготовки являются гораздо более простыми, чем в спектрометрии или газовой хроматографии. Преимуществом метода ИЭА является (в отличие от других методов, например, атомно-адсорбционной спектрометрии) также способность “отличать” свободные ионы от их связанных химических форм, что важно и для оценки физико-химических свойств анализируемых веществ, и с точки зрения биологического контроля (например, при оценке токсичности вод). Время проведения анализа иногда сокращается до нескольких секунд за счет повышения скорости развертки поляризующего напряжения.

Потенциометрия с применением различных ионоселективных электродов используется в анализе воды для определения большого числа неорганических катионов и анионов. Концентрации, которые удается определить таким способом, 10 0 -10 -7 моль/л. Контроль с помощью ионоселективных электродов отличается простотой, экспрессностью и возможностью проведения непрерывных измерений. В настоящее время созданы ионоселективные электроды, чувствительные к некоторым органическим веществам (например, алкалоидам), поверхностно-активным веществами и моющим веществам (детергентам). В анализе воды используются компактные анализаторы типа зондов с применением современных ионоселективных электродов. При этом в ручке зонда смонтирована схема, обрабатывающая отклик, и дисплей.

Кондуктометрия используется в работе анализаторов детергентов в сточных водах, при определении концентраций синтетических удобрений в оросительных системах, при оценке качества питьевой воды. В дополнение к прямой кондуктометрии для определения некоторых видов загрязнителей могут быть использованы косвенные методы, в которых определяемые вещества взаимодействуют перед измерением со специально подобранными реагентами и регистрируемое изменение электропроводности вызывается только присутствием соответствующих продуктов реакции. Кроме классических вариантов кондуктометрии применяют и ее высокочастотный вариант (осциллометрию), в котором индикаторная электродная система реализуется в кондуктометрических анализаторах непрерывного действия.

Таким образом, я считаю, что в нашем случае необходимо проводить разовый отбор проб, когда проба берется из подземных вод реки, и серийный отбор проб. Пробы берутся как простые, так и смешанные, хотя я считаю, что простая проба дает более точные сведения о загрязнении. Но она дает информацию о составе вод в данный момент времени в данном месте, а нам также важна информация о среднем составе воды в реке. Смешанную пробу, я считаю, лучше брать, многократно в одном месте через определенные промежутки времени, так как это приведет к меньшей ошибке измерения, чем при одновременном отборе проб с разных участков реки. Простая проба отбирается с различной глубины по выбранному створу реки (горизонты створа). Количество пробы 1 - 2 л. Если не возможен быстрый анализ, то пробу консервируют, добавляя консервант. Универсального консерванта для всех загрязнителей не существует. Для каждого загрязнителя используется свой консервант. Пробоподготовка в нашем случае заключается в концентрировании. Методы концентрирования, которые, я считаю, наиболее подходящими, это выпаривание, отгонка и соосаждение, хотя могут использоваться и другие методы в зависимости от целей анализа и определяемых компонентов. Методы анализа: оптические, хроматографические методы и кондуктометрия.

Отбор проб является важной частью анализа воды. От того, как он будет выполнен, зависит достоверность результатов измерений. Ошибки, возникающие вследствие неправильно проведенного отбора проб, в дальнейшем исправить, как правило, не удается, и они могут сделать все исследования, даже с использованием самого точного и дорогостоящего оборудования, бессмысленными. Именно поэтому отбор проб воды должен проводиться безупречно на всех стадиях: от выбора места отбора и подготовки посуды до передачи проб на анализ в лабораторию.

При отборе проб воды для обеспечения их репрезентативности и предотвращения изменения состава отобранной на анализ воды с момента отбора до начала выполнения работ в лаборатории важно выполнять все правила и рекомендации, установленные в нормативных документах. Однако необходимо учитывать, что практически для каждого типа воды существуют свои особенности этой процедуры. Условия, которые следует соблюдать при отборе проб, настолько разнообразны, что нельзя дать подробных рекомендаций для всех случаев в соответствии со всеми требованиями.

Инструкция по отбору проб воды из скважины и разводящей сети:

Пробу воды на бактериологический и полный (или краткий) химический анализ Заказчик должен отбирать в специально подготовленную посуду, которую накануне отбора получает в лаборатории Исполнителя.

Отбор проб воды

Первым этапом отбирается проба на бактериологический анализ:

1. Отбор проб проводят продезинфицированными (например, обработкой этиловым спиртом или дезинфицирующими салфетками для индивидуального пользования) непосредственно перед отбором руками или в стерильных перчатках.
2. Произвести обжиг крана круговыми движениями “квача” (ватный или марлевый тампон, закрепленный на проволоке, смоченный спиртом). При обжиге соблюдать технику безопасности работы с горючими материалами;

Примечание:

Эта процедура необходима для того, чтобы минимизировать попадание в пробу микроорганизмов, которые могут оказаться в воде при разрушении биопленок и ресуспендировании (отложений осадков в системе трубопроводов, в том числе в тупиковых зонах и местах соединений трубопроводов и их колен-изгибов) при увеличении потока воды и колебаний давления в сети.
1. Открыть кран, пропустить воду в течение 15 минут
2. Емкость открывают непосредственно перед отбором, вынимая пробку вместе со стерильным колпачком (из плотной бумаги). Пробка и края емкости не должны касаться посторонних поверхностей.
3. Не меняя напор воды заполнить емкость до «плечиков» (должно оставаться пространство между пробкой и поверхностью воды), избегая при этом контакта с краном или стенками скважины.
4. После заполнения, емкость закрывают стерильной пробкой с колпачком, и доставляют в лабораторию.

5. Время между отбором и доставкой проб в лабораторию исполнителя не более 2-х часов (допускается до 6 часов при условии хранения при t 2-4°C).

6. При транспортировке пробы на бактериологический анализ не допускать намокания пробки.

7. Емкости с пробами должны быть четко промаркированы и сопровождаться документом (актом отбора) отбора проб воды с указанием места, даты, времени отбора и другой информации необходимой лаборатории исполнителю.

Не допускается!!!

- пробу воды, предназначенную для микробиологического анализа, использовать для измерения температуры или другого измеряемого на месте отбора проб показателя;

- ополаскивать емкости для отбора проб перед отбором проб;

-во время отбора хвататься за «горлышко» руками;

-при отборе проб должны быть обеспечены асептические условия (чистые руки или стерильные перчатки) и защита проб от пыли;

-обжигать поверхность крана зажигалкой;

-исследовать пробы воды при нарушении условий срока доставки и неправильного транспортирования или хранения;

Вторым этапом отбирается проба на полный химический анализ (краткий химический анализ):

Не закрывая кран заполнить водой емкость, приготовленную под пробу на полный химический анализ:

При выполнении разных исследований, отбирают несколько емкостей из стекла и полимера так, чтобы общий объем пробы не был меньше допустимого;

Отбирая воду на краткий химический анализ – предварительно ополоснуть емкости 2-3 раза отбираемой водой;

После заполнения емкость закрывают пробкой и доставляют в лабораторию

Емкости с пробами должны быть четко промаркированы и сопровождаться документом (актом отбора) отбора проб воды с указанием места, даты, времени отбора и другой информации необходимой лаборатории исполнителя.

Требования к условиям транспортировки, хранения проб воды для санитарно-химического анализа

Емкость размещают внутри контейнера (термосумка), предотвращающего их опрокидывание, загрязнение, самопроизвольное открытие пробок.

Условия хранения проб должны исключать воздействие солнечного света и повышенных температур на пробы воды.

Не допускается совместное хранение проб воды с другими веществами

Срок доставки пробы в лабораторию не должен превышать более 24 часов с момента отбора пробы в емкости.

Нарушение требований отбора, транспортирования и хранения проб воды может повлиять на качество и достоверность полученных результатов!!!

Качество воды по бактериологическим и санитарно-химическим показателям регламентируется следующими документами:

Вода питьевая централизованного водоснабжения (водопроводная сеть, скважины, колонки)- СанПиН 2.1.4.1074-01;

Вода питьевая нецентрализованного водоснабжения (родники, колодцы, скважины индивидуального пользования)- СанПиН 2.1.4.1175-02.

Отбор проб воды для бактериологического и санитарно-химического анализа проводится в соответствии с требованиями:

Любые типы вод (скважины, водоемы, бассейны)- ГОСТ 31861-2012 «Вода. Общие требования к отбору проб», ГОСТ 31942-2012. «Вода. Отбор проб для микробиологического анализа»

  1. Для отбора проб приготовьте чистую пластиковую бутыль из под питьевой воды: объемом 1,5 - 2 литра. Нельзя использовать бутыли из под пива, пепси-колы, кваса и др. сладких напитков.
  2. Пробу из скважины следует отбирать после продолжительного слива воды. В среднем, потребуется слить 3 литра воды на каждые 10 метров глубины скважины.
  3. Перед набором воды необходимо тщательно сполоснуть бутыль несколько раз анализируемой водой.
  4. Бутыль заполняют под горлышко. Очень важно, чтобы вода при этом не взмучивалась и не соприкасалась с атмосферным воздухом. Для этой цели один конец сифонного шланга опускают в точку отбора пробы, а второй - на дно бутыли. Во время наполнения емкости не допускается менять напор воды (закрывая или открывая кран). Бутыль заполняют доверху и затем продолжают пропускать через нее анализируемую воду, пока вода в бутыли не сменится несколько раз. Затем сразу же закрывают бутыль пробкой, выдавив оставшийся воздушный пузырь. Такой способ набора пробы позволяет уменьшить насыщение воды кислородом воздуха и, как следствие, предотвращает протекание химических реакций!
  5. Взятый образец готов для проведения химического анализа воды, но помните: чем быстрее образец попадет в лабораторию, тем точнее будет результат.

На данном изображении видно, как меняются органолептические показатели пробы воды из скважины в течении короткого промежутка времени. Через четыре с небольшим часа анализ воды данной пробы теряет смысл.