Главная · Изжога и отрыжка · Определение содержания витамина а. ОФС.1.2.3.0017.15 Методы количественного определения витаминов. Определение витамина B2

Определение содержания витамина а. ОФС.1.2.3.0017.15 Методы количественного определения витаминов. Определение витамина B2

Термин «Витамины» в переводе означает «амины жизни». Ныне таких веществ насчитывается более 30, и все они жизненно необходимы человеческому организму, входя в состав всех тканей и клеток, активизируя и определяя ход многих процессов.

Потребность в витаминах неодинакова и разнится в зависимости от возрастного периода жизни человека, заболевания, погодных условий. Повышается потребность в витаминах во время беременности, при физической и умственной нагрузках, при гиперфункции щитовидной железы, надпочечной недостаточности, стрессовых ситуациях.

Следует отметить, что гипервитаминизация, то есть повышенное поступление витаминов в организм человека, также неблагоприятна для обменных функций. Передозировка витаминов происходит в основном при использовании концентрированных препаратов. Большая часть витаминов поступает в организм человека из растений и незначительная часть – из продуктов животного происхождения. Более 20 витаминных веществ не могут быть синтезированы в организме человека, а другие синтезируются во внутренних органах, причем доминирующее значение в таких процессах имеет печень.

Поэтому мы выбираем данную тему для своего исследования.

Ведь в наше время все больше приоритетным становиться здоровье человека, здоровый образ жизни. Сейчас выпускается много различных биологических добавок (БАД), стимулирующих и лекарственных препаратов, помогающих укреплению здоровья.

Но, к сожалению, приходиться признать, что в аптечную сеть попадает и много фальсифицированной, некачественной продукции. После торговли оружием, наркотиками, фальсификация лекарственных препаратов занимает постыдное третье место. Следует отметить, что витаминные препараты и витаминные комплексы отнюдь не дешевая продукция, стоят они дорого. Интересно было узнать, что скрывается за этикетками лекарственных препаратов, продаваемых в аптеках нашего города. Провести качественный анализ всех абсолютно препаратов мы не можем, нужны определенные реактивы, средства, методики. В основу своей исследовательской деятельности мы использовали методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

Гипотеза: предполагаем, что за этикетками лекарственных витаминных препаратов скрываются, не фальсифицированные витамины, а натуральные препараты, так как здоровье человека и наших амурчан – наивысшая ценность.

Объект исследования: витаминные препараты, приобретенные в аптеках города.

Цель нашей работы: провести качественный анализ витаминов, купленных в аптеках г. Амурска и Комсомольска – на – Амуре.

Соответственно теме были поставлены следующие задачи:

1. Познакомиться с характеристикой основных витаминов.

2. Провести качественный анализ препаратов.

3. Сопоставить полученные результаты с ходом исследования.

4. Сделать выводы.

Материалы и оборудование: набор витаминов, химические реактивы, методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

1. Характеристика витаминов.

Чтобы человек был сильным и здоровым, ему нужны витамины. Это все мы знаем с раннего детства. Но вот что это за вещества такие – витамины, редко задумываемся. А когда о них идет речь, просто представляем себе коробочку с цветными драже или вазу с фруктами. Нужно ли человеку, далекому от медицины, знать о витаминах больше? Да, нужно – хотя бы для того, чтобы

Еще раз осознать, насколько важно разнообразное питание. Сегодня даже врачи призывают делать ставку не на аптечные витаминные препараты, а на богатые витаминами натуральными продукты (в первую очередь это овощи и фрукты, но не только). Итак, что же такое витамины, и откуда их черпать для нужд организма?

Витамины образуются путём биосинтеза в растительных клетках и тканях. Большинство из них связано с белковыми носителями. Обычно в растениях они находятся не в активной, но высокоорганизованной форме и, по данным исследований, в самой подходящей форме для использования организмом, а именно – в виде провитаминов.

Витамины обеспечивают экономичное и оптимальное использование организмом основных питательных веществ.

Недостаток витаминов вызывает тяжёлые расстройства. Скрытые формы витаминной недостаточности не имеют ярких внешних проявлений и симптомов. Часто все, на что жалуется человек,- это быстрая утомляемость, снижение работоспособности, общая слабость. Также при гиповитаминозе

Организм мене устойчив к воздействию всевозможных неблагоприятных факторов. Он дольше восстанавливает нормальные функции после перенесенных заболеваний и более подвержен разного рода осложнениям.

Все витамины делят на две большие группы: водорастворимые и жирорастворимые. К водорастворимым относятся все витамины группы B , витамины PP, H, C, P, а также в жирорастворимым – витамины A, E, K, D.

А теперь поближе познакомимся с наиболее известными витаминами.

Рибофлавин(B2)

Рибофлавин – витамин для «кожи». Он отвечает за то, чтобы кожа была здоровой, мягкой гладкой. Кроме того, этот витамин необходим глазам (например, при воспалении глаз рекомендуют принимать по 3 мг рибофлавина 3 раза в день перед едой).

Дефицит рибофлавина вызывает не только кожные болезни, но также расстройства пищеварения, хронические колиты и гастриты, заболевания нервной системы и общую слабость, приводит к снижению сопротивляемости организма инфекциям.

Пиридоксин (B6)

Этот витамин очень важен для организма, поскольку способствует лучшему усвоению ненасыщенных жирных кислот.

Кроме того, пиридоксин необходим для работы мышц: совместно с кальцием он способствует их эффективному функционированию и полноценному расслаблению. Установлено, что дефицит пиридоксина может стать фактором, провоцирующим развитие отита.

Аскорбиновая кислота (витамин С)

Этот витамин выполняет в организме множество разных функций. Без его участия не обходятся окислительно-восстановительные процессы, он повышает эластичность и прочность кровеносных сосудов, вместе с витамином А защищает организм от инфекций, блокирует токсичные вещества в крови, необходим для укрепления зубов и десен.

Кроме того, достаточное поступление аскорбиновой кислоты необходимо и для увеличения продолжительности жизни, поскольку она участвует в создании и оздоровлении соединительных тканей.

Нетрудно понять, что дефицит витамина С очень опасен. А между тем, организм не имеет возможности запастись им впрок, поэтому принимать аскорбиновую кислоту (в составе пищи и даже в виде аптечного препарата) нужно регулярно. Не бойтесь передозировки: витамин не токсичен, и избыток его легко выводится и организмов.

Никотиновая кислота (РР)

Этот витамин участвует во многих окислительных реакциях. Его недостаток, часто связанный с однообразием рациона (например, при питании исключительно зерновыми культурами), способствует развитию пеллагры.

Ретинол (витамин А)

Витамин А продлевает молодость, нормализует обмен веществ, участвует в процессе роста, предохраняет от поражений кожу и слизистые оболочки. В организме животных и человека образуется из каротина (так называемого провитамина А).

При дефиците этого витамина ухудшается зрение, изменяется состояние кожи (она становится сухой, может появиться мелкая сыпь), начинается интенсивное выпадение волос.

Кальциферол (витамин D)

Основные задачи витамина D в организме – способствовать усвоению кальция и регулировать фосфорно-кальциевый баланс. Он активно участвует в процессе образования и роста костной ткани.

Кроме того, витамин D необходим для нормальной свертываемости крови и работы сердца. Также он участвует в регуляции возбудимости нервной системы.

Несмотря на то, что витамин D содержат очень немногие продукты питания, да и то в небольшом количестве, его дефицит встречается не так уж часто. Дело в том, что организм умеет производить его самостоятельно под воздействием ультрафиолета (поэтому витамин D называют также «солнечным витамином»). Причем, для этого совсем не нужно часами загорать под палящими лучами солнца, достаточно всего лишь на несколько минут в день выбираться на улицу в светлое время суток.

Кстати, в организме светлокожих людей витамин D образуется в 2 раза быстрее, чем у людей со смуглой кожей.

Токоферол (витамин E)

Витамин Е известен как «витамин плодовитости», поскольку необходим для воспроизведения потомства. Кроме того, он обеспечивает нормальное функционирование сердечной мышцы и препятствует образованию тромбов в кровеносных сосудах.

С недавнего времени токоферол эффективно используется при лечении диабета и астмы.

Витамин Е нетоксичен, однако избыточное его содержание в организме приводит к повышению артериального давления.

Принимать токоферол следует только в сочетании с ретинолом (витамином А).

Укрепляет проницаемость стенок сосудов, снижает окисление аскорбиновой кислоты, способствует лучшей переносимости стрессовых ситуаций.

Теперь, когда мы многое узнали о том, какова роль витаминов и насколько они полезны, у нас возникает вопрос: «А откуда их можно получить?» Вопрос этот далеко не праздный. Можно потреблять аптечные синтетические витамины, но специалисты предупреждают: такие витамины усваиваются далеко не всегда. И потом, зачем прибегать к искусственным средствам, если можно получать витамины непосредственно с пищей.

2. Описание лекарственных препаратов.

Витамины – это незаменимые для организма вещества, присутствие которых имеет принципиальное значение для нормального обмена веществ и поддержания жизнедеятельности вообще. Это низкомолекулярные соединения органической природы. Большинство витаминов не синтезируется в организме человека, а потому исключительно важно их поступления с пищей. (Исключение составляет витамин D). По сравнению с основными питательными веществами, витамины должны поступать в ничтожно малых дозах. В то же время дефицит или отсутствие того или иного витамина вызывает различные заболевания и физиологические расстройства.

Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.



В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

Нитроформа Ацидоформа

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

о-Фенилендиамин ДАК Хиноксалин

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

Тиамин Тиохром

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Рибофлавин Люмифлавин

Определение витамина В 6 . Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·10 3) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

Индофенол

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9 . Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH) 2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH) 2 , содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.

Методы количественного определения витаминов основаны на их физико-химических свойствах, таких как окислительно-восстановительные свойства, способность флуоресцировать в УФ-свете. Применяют различные методы определения: титрометрические, фотоколориметрические, спектрофотометрические, флуорометрические и др.

Количественное определение витамина К

Витамин К в листьях крапивы определяют методом СФМ (таблица 3).

Таблица 3 . Количественное определение витамина K в листьях крапивы (авторский метод)

Количественное определение БАВ в плодах шиповника.

Аскорбиновую кислоту можно определять титрометрическим методом, который основан на восстановлении 2,6-дихлорфенолиндофенола. С этим же реактивом можно провести фотоколориметрическое определение аскорбиновой кислоты. Для этого проводят экстракцию сырья 2 % метафосфорной кислотой, добавляют раствор 2,6-дихлорфенолиндофенола. Через 35 сек. проводят фотоколориметрирование. Параллельно колориметрируют контрольный раствор 2 % метафосфорная кислота с 2,6-дихлорфенолиндофенолом. Интенсивность окраски пропорциональна количеству аскорбиновой кислоты.

Количественное определение аскорбиновой кислоты можно провести фотоколориметрическим методом с помощью гексацианоферрита калия. В кислой среде аскорбиновая кислота восстанавливает гексацианоферрит калия до гексацианоферрата калия, который в присутствии ионов железа (Ш) образует берлинскую лазурь, с последующим ее фотоколориметрированием.

Метод количественного определения аскорбиновой кислоты (по ГФ XI, вып. 2, стр. 294) основан на ее способности окисляться до дегидроформы раствором 2,6-дихлорфенолиндофенолята и восстанавливать последний до лейкоформы. Точка эквивалентности устанавливается появлением розового окрашивания, которое свидетельствует об отсутствии восстановителя, т. е кислоты аскорбиновой (2,6-дихлорфенолиндофенол имеет в щелочной среде синее окрашивание, в кислой - красное, а при восстановлении обесцвечивается):



1. Определение содержания аскорбиновой кислоты. (таблица 4). Из грубо измельченной аналитической пробы плодов берут навеску массой 20 г, помещают в фарфоровую ступку, где тщательно растирают со стеклянным порошком (около 5 г), постепенно добавляя 300 мл воды, и настаивают 10 мин. Затем смесь размешивают и извлечение фильтруют. В коническую колбу вместимостью 100 мл вносят 1 мл полученного фильтрата, 1 мл 2%раствора хлористоводородной кислоты, 13 мл воды, перемешивают и титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л) до появления розовой окраски, не исчезающей в течение 30-60 с. Титрование продолжают не более 2 мин. В случае интенсивного окрашивания фильтрата или высокого содержания в нем аскорбиновой кислоты [расход раствора 2,6-дихлорфенолиндофенолятанатрия (0,001 моль/л) более 2 мл], обнаруженного пробным титрованием, исходное извлечение разбавляют водой в 2 раза или более.

где 0,000088 - количество аскорбиновой кислоты, соответствующее 1мл раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), в граммах; V - объем раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Примечания . Приготовление раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л): 0,22 г 2,6-дихлорфенолиндофенолята натрия растворяют в 500 мл свежепрокипяченной и охлажденной воды при энергичном взбалтывании (для растворения навески раствор оставляют на ночь). Раствор фильтруют в мерную колбу вместимостью 1 л и доводят объем раствора водой до метки. Срок годности раствора не более 7 сут при условии хранения в холодном, темном месте.

Установка титра. Несколько кристаллов (3-5) аскорбиновой кислоты растворяют в 50 мл 2 % раствора серной кислоты; 5 мл полученного раствора титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия до появления розового окрашивания, исчезающего в течение 1-2 нед. Другие 5 мл этого же раствора аскорбиновой кислоты титруют раствором калия йодата (0,001 моль/л) в присутствии нескольких кристаллов (около 2 мг) калия йодида и 2-3 капель раствора крахмала до появления голубого окрашивания. Поправочный коэффициент вычисляют по формуле:

где V - объем раствора калий йодата (0,001 моль/л), пошедшего на титрование, в миллилитрах; V1-объем раствора 2,6-дихлорфенолиндофенолята натрия, пошедшего на титрование, в миллилитрах.

2. Определение содержания свободных органических кислот. Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. 25 г измельченных плодов шиповника помещают в колбу вместимостью 250 мл, заливают 200 мл воды и выдерживают в течение 2 ч на кипящей водяной бане, затем охлаждают, количественно переносят в мерную колбу вместимостью 250 мл, доводят объем извлечения водой до метки перемешивают. Отбирают 10 мл извлечения, помещают в колбу вместимостью 500 мл, прибавляют 200-300 мл свеже-прокипяченной воды, 1 мл 1% спиртового раствора фенолфталеина, 2 мл 0,1 % раствора метиленового синего и титруют раствором натра едкого (0,1 моль/л) до появления в пене лилово- красной окраски.

где 0,0067-количество яблочной кислоты, соответствующее 1 мл раствора натра едкого (0,1 моль/л), в граммах; V - объем раствора натра едкого (0,1 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Таблица 4. Количественное определение аскорбиновой кислоты в плодах шиповника (фармакопейный метод)

Количественное определение химических веществ в цветках календулы.

Каротиноиды определяют в лекарственном сырье фотоколориметрическим методом, основанном на измерении интенсивности их природной окраски. Разработан спектрофотометрический метод определения каротиноидов. Каротиноиды из сырья экстрагируют петролейным эфиром, затем хроматографируют на пластинке "Силуфол" в системе петролейный эфир-бензол-метанол (60:15:4), элюируют хлороформом и спектрофотометрируют при длине волны 464 нм (-каротин) при 456 нм (в-каротин).

  • 1. Около 1 г (точная навеска) измельченных цветков ноготков, просеянных сквозь сито с отверстиями размером 1 мм, помещают в коническую колбу вместимостью 250 мл, прибавляют 50 мл спирта 70 %, колбу закрывают пробкой, взвешивают (с погрешностью ± 0,01 г) и оставляют на 1 ч. Затем колбу соединяют с обратным холодильником, нагревают, поддерживая слабое кипение в течение 2 ч. После охлаждения колбу с содержимым вновь закрывают той же пробкой, взвешивают и потерю в массе восполняют растворителем. Содержимое колбы тщательно взбалтывают и фильтруют через сухой бумажный фильтр, отбрасывая первые 20 мл, в сухую колбу вместимостью 200 мл (раствор А).
  • 1 мл раствора А помещают в мерную колбу вместимостью 25 мл, прибавляют 5 мл раствора алюминия хлорида, 0,1 мл кислоты уксусной и доводят объем раствора спиртом 96 % до метки и оставляют на 40 минут (раствор Б).

Через 40 минут измеряют оптическую плотность испытуемого раствора Б и раствора стандартного образца Б 1 на спектрофотометре в максимуме поглощения при длине волны (408 + 2) нм в кювете с толщиной слоя 10 мм, используя растворы сравнения для испытуемого раствора и стандартного образцов.

где: А - оптическая плотность испытуемого раствора;

А о - оптическая плотность раствора стандартного образца рутина;

а - навеска сырья, г;

а о - навеска стандартного образца рутина, г;

W - влажность сырья, %;

Допускается проводить определение содержания суммы флавоноидов с использованием удельного показателя поглощения рутина.

МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ

Рациональное питание человека требует сбалансированности не только по содержанию белков, жиров, углеводов, но и по содержанию микронутриентов. Результаты изучения фактического питания различных групп населения свидетельствуют о значительной распространенности полигиповитаминозов, недостаточности основных минеральных веществ и пищевых волокон. Устранение недостаточностей микронутриентов не может быть достигнуто простым увеличением потребления продуктов питания. Современные условия жизни и труда большинства населения приводят к уменьшению энергетических затрат, что обусловливает необходимость снижения количества потребляемой пищи и влечет за собой недостаточное потребление содержащихся в ней микронутриентов. Знания клинических проявлений недостаточностей микронутриентов, источников витаминов, минеральных веществ и пищевых волокон в питании, способах сохранения витаминной ценности продуктов, приемах профилактической витаминизации позволяют врачу оптимизировать статус питания пациентов.

ЦЕЛЬ ЗАНЯТИЯ: ознакомить с биологической ролью, нормированием и источниками в питании микронутриентов и пищевых волокон; научить определению химического состава рациона питания по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (на примере анализа меню-раскладки суточного рациона питания студента-медика), витаминосберегающим способам хранения и кулинарной обработки продуктов, профилактической витаминизацией.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ НА ЗАНЯТИИ

1. Определение качественного состава суточного рациона питания студента по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (по меню-раскладке, составленной к теме 3.2.) с использованием «Таблиц химического состава и энергетической ценности пищевых продуктов».

2. Решение ситуационных профессионально ориентированных задач двух типов, оформление решения в протоколе.

3. Лабораторная работа по определению содержания витамина С в овощах. 3.1. Определение содержания витамина С в сыром и вареном картофеле; расчет процента потери витамина С при кулинарной обработке.

3.2. Определение содержания витамина С в капусте; расчет процента потери витамина С при хранении.

4. Заслушивание и обсуждение рефератов, подготовленных студентами

по индивидуальному заданию преподавателя.

ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ

1.Биологическая роль, нормирование, источники в питании водорастворимых витаминов.

2.Биологическая роль, нормирование, источники в питании жирорастворимых витаминов.

3. Виды витаминных недостаточностей.

4. Причины гиповитаминозов, их проявления.

5.Приемы сохранения и повышения витаминной ценности рационов питания, профилактика гиповитаминозов.

6.Биологическая роль, нормирование, источники в питании минеральных веществ.

7.Биологическая роль, нормирование, источники в питании пищевых волокон.

ПРОТОКОЛ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

"_____"___________20___г.

Таблица 46

Качественный состав суточного рациона питания студента

Наименования блюд меню, набор продуктов на порцию Масса, г Витамины Минеральные вещества Пище-вые волок- на, г
С мг В мг В мг А мкг D мкг Ca мг P мг К мг Fe мг J мкг
ЗАВТРАК:
2-ой ЗАВТРАК:
ОБЕД:
УЖИН:
ВСЕГО ЗА СУТКИ:

2. Решение ситуационной задачи (тип 1) №____

__________________________________________________________________

______________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Решение ситуационной задачи (тип2) №___

__________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

3. Определение содержания витамина С в овощах:

вид продукта _____________, навеска продукта ____________г,

количество 0,0001н. раствора иодноватокислого калия, пошедшего на тит-

рование пробы _____мл;

Формула для расчета:

а) сырой картофель _______ м, вареный картофель _______ мг,

потеря витамина С при кулинарной обработке _________%

б) капуста ______ мг, среднее содержание в капусте _____ мг,

потеря витамина С при хранении _____ %.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Работу выполнил __________________

Подпись преподавателя _____________

СПРАВОЧНЫЙ МАТЕРИАЛ

Дефиниции темы

АВИТАМИНОЗ - полное истощение витаминных ресурсов организма.

АНТИВИТАМИНЫ - соединения, частью или полностью выключающие витамины из обменных реакций организма путем их разрушения, инактивации или препятствуя их ассимиляции. Антивитамины делятся на 2 группы:

а) структуроподобные соединения (конкурентные ингибиторы; вступают с витаминами или их производными в конкурирующие отношения в соответствующих биохимических реакциях обмена веществ), к ним относятся сульфаниламиды, дикумарин, мегафен, изониазид и др.

б) структуроразличные соединения (природные антивитамины; вещества,

которые путем изменения молекулы или комплексного соединения с метаболитами частично или полностью лишают витамин его действия), к ним относятся тиаминаза, аскорбиназа, авидин и др.

ВИТАМИНЫ - необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов, жирорастворимых витаминов - в контроле функционального состояния мембран клетки и субклеточных структур.

ВИТАМИНЫ-АНТАГОНИСТЫ: В 1 и В 2 ; А и Д; никотиновая кислота и холин; тиамин и холин (при длительном введении с лечебными целями одного витамина обнаруживаются симптомы недостаточности другого).

ВИТАМИНЫ-СИНЕРГИСТЫ: С и Р; Р, С, К; В 12 и фолиевая кислота; С, К, В 2 ; А и Е; Е и инозит (при комплексном применении в поливитаминных препаратах могут усиливать биологический эффект друг друга). ГИПОВИТАМИНОЗ - резкое снижение обеспеченности организма тем или иным витамином.

СКРЫТАЯ (ЛАТЕНТНАЯ) ФОРМА ВИТАМИННОЙ НЕДОСТАТОЧНОСТИ не имеет каких-либо внешних проявлений и симптомов, однако, оказывает отрицательное влияние на работоспособность, устойчивость организма к различным неблагоприятным факторам, удлиняет выздоровление после перенесенного заболевания.

ПИЩЕВЫЕ ВОЛОКНА – высокомолекулярные углеводы (целлюлоза, гемицеллюлоза, пектины, лигнин, хитин и др.) главным образом растительного происхождения, устойчивые к перевариванию и усвоению в тонком кишечнике, но подвергающиеся полной или частичной ферментации в толстом кишечнике.

ВАЖНЕЙШИЕ ПРИЧИНЫ ГИПОВИТАМИНОЗОВ И АВИТАМИНОЗОВ

1. Недостаточное поступление витаминов с пищей.

1.1. Низкое содержание витаминов в рационе.

1.2. Снижение общего количества потребляемой пищи в связи с низкими энерготратами.

1.3. Потеря и разрушение витаминов в процессе технологической переработки продуктов питания, их хранения и нерациональной кулинарной

обработки.

1.4. Отклонения от сбалансированной формулы питания (преимущественно углеводное питание требует дополнительного количества тиамина;

при недостаточном введении полноценных белков витамины С, РР, В 1 быстро выводятся с мочой, не участвуют в обменных процессах, задерживается превращение каротина в витамин А).

1.5. Анорексия.

1.6. Присутствие витаминов в некоторых продуктах в неутилизируемой форме (инозит в виде фитина зерновых продуктов).

2. Угнетение кишечной микрофлоры, продуцирующей некоторые витамины (В 6 , К).

2.1. Болезни желудочно-кишечного тракта.

2.2. Последствия химиотерапии (дисбактериозы).

3. Нарушение ассимиляции витаминов.

3.1. Нарушение всасывания витаминов в желудочно-кишечном тракте

при заболеваниях желудка, кишечника, поражениях гепатобилиарной системы, а также в пожилом возрасте (нарушение секреции желчи, необходимое для всасывания жирорастворимых витаминов).

3.3. Нарушение обмена витаминов и образования их биологически активных (коферментных) форм при различных заболеваниях, действии токсических и инфекционных агентов, химиотерапии, в пожилом возрасте.

4. Повышенная потребность в витаминах.

4.1. Особые физиологические состояния организма (интенсивный рост, беременность, лактация).

4.2. Особые климатические условия (потребность в витаминах повышается на 30-60% в связи с повышенными энерготратами при низкой температуре воздуха в климатической зоне Севера).

4.4. Значительная нервно-психическая нагрузка, стрессовые состояния.

4.5. Воздействие вредных факторов производства (Рабочим горячих цехов в условиях воздействия высоких температур /32 градуса/ при одновременной физической нагрузке требуется вдвое больше витаминов С, В 1 , В 6 , пантотеновой кислоты, чем при 18 градусах).

4.6. Инфекционные заболевания и интоксикации (При тяжелых септических процессах потребность организма в витамине С достигает 300-500 мг в сутки).

4.7. Заболевания внутренних органов и эндокринных желез.

4.8. Повышенная экскреция витаминов.

5. Врожденные, генетически обусловленные нарушения обмена и функций витаминов.

5.1. Врожденные нарушения всасывания витаминов.

5.2. Врожденные нарушения транспорта витаминов кровью и через клеточные мембраны.

5.3. Врожденные нарушения биосинтеза витаминов (никотиновой кислоты из триптофана).

5.4. Врожденные нарушения превращения витаминов в коферментные

формы, простетические группы и активные метаболиты.

5.5. Нарушение включения витаминов в состав активного центра фермента.

5.6. Нарушение структуры апофермента, затрудняющее его взаимодействие с коферментом.

5.7. Нарушение структуры апофермента, приводящее к полной или частичной утрате ферментативной активности вне зависимости от взаимодействия с коферментом.

5.8. Усиление катаболизма витаминов.

5.9. Врожденные нарушения реабсорбции витаминов в почках.

Таблица 47

(в 100 г съедобной части)

Продукты В 1 В 2 РР В 6 С Е А В-ка-ро-тин D В 12 Фо-лие-вая кисл.
Мг/100г Мкг/100 г
Хлеб ржаной 0,18 0,11 0,67 0,17 - 2,2 - - - -
Хлеб пшенич. 0,21 0,12 2,81 0,3 - 3,8 - - - -
Крупа овсян. 0,49 0,11 1,1 0,27 - 3,4 - - - -
Крупа манная 0,14 0,07 1,0 0,17 - 2,5 - - - -
Крупа рисовая 0,08 0,04 1,6 0,18 - 0,4 - - - -
Крупа гречнев. 0,53 0,2 4,19 0,4 - 6,6 - - - -
Пшено 0,62 0,04 1,55 0,52 - 2,6 - 0,15 - -
Макароны 0,17 0,08 1,21 0,16 - 2,1 - - - -
Говядина 0,07 0,18 3,0 0,39 Сл - - - - 2,8 8,9
Свинина 0,52 0,14 2,4 0,33 Сл - - - - - 5,5
Печень говяж. 0,3 2,19 6,8 0,7 1,3 3,8 1,0 -
Колбаса варен. 0,25 0,18 2,47 0,19 - - - - - -
Куры 0,07 0,15 3,6 0,61 - - 0,1 - - - 5,8
Яйца куриные 0,07 0,44 0,2 0,14 - 0,3 - 4,7 0,1 7,5
Треска 0,09 0,16 2,3 0,17 Сл. 0,9 Сл. - - 1,6 11,3
Икра осетр. 0,3 0,36 1,5 0,29 7,8 - 0,2 - -
Молоко Пастер. 0,03 0,13 0,1 - 1,0 - Сл. 0,01 - - -
Кефир 0,03 0,17 0,14 0,06 0,7 0,1 Сл. 0,01 - 0,4 7,8
Сметана 0,02 0,1 0,07 0,07 0,2 0,5 0,2 0,1 0,1 0,36 8,5
Творог 0,04 0,27 0,4 0,11 0,5 0,4 0,1 0,03 - 1,0 35,0
Сыры твердые 0,02 0,3 0,3 0,1 1,6 0,5 0,2 0,1 - 2,5 10-45
Масло сливоч. Сл 0,01 0,1 - - - 0,5 0,34 - - -
Масло подсолнечное рафинирован. _ - - - - - - - - -
Горох 0,81 0,15 2,2 0,27 - 9,1 - 0,07 - -
Картофель 0,12 0,05 0,9 0,3 0,1 - 0,02 - -
Капуста белокачанная 0,06 0,05 0,4 0,14 0,1 - 0,02 - -
Лук зеленый 0,02 0,1 0,3 0,15 - - -
Томаты 0,06 0,04 0,53 0,1 0,4 - 1,2 - -
Огурцы 0,03 0,04 0,2 0,04 0,1 - 0,06 - -
Свекла 0,02 0,04 0,2 0,07 0,1 - 0,01 - -
Морковь 0,06 0,07 0,13 0,6 - - -
Грибы белые 0,02 0,3 4,6 0,07 0,6 - - - -
Яблоки 0,01 0,03 0,3 0,08 0,6 - 0,03 - - 1,6
Абрикосы 0,03 0,06 0,07 0,05 0,9 - 1,6 - -
Вишни 0,03 0,3 0,4 0,05 0,3 - 0,1 - -
Малина 0,02 0,05 0,6 0,07 0,6 - 0,2 - -
Земляника 0,03 0,05 0,3 0,06 0,5 - 0,03 - -
Смородина чер. 0,02 0,02 0,3 0,13 0,7 - 0,1 - -
Облепиха 0,1 0,05 0,6 0,11 - - -
Шиповник сух. 0,15 0,84 1,5 - - - 6,7 - - -
Виноград 0,05 0,02 0,3 0,09 - - Сл. - -
Лимоны 0,04 0,02 0,1 0,06 - - 0,01 - -
Апельсины 0,04 0,03 0,2 0,06 0,2 - 0,05 - -
Пирожные, торты 0,75 0,1 0,7 - - - 0,1 0,14 - - -
Дрожжи прессован. 0,6 0,68 11,4 0,58 - - - - - -

Введение

Определение витамина В1 (обзор литературы)

1 Историческая справка

2 Классификация витаминов

4 Синтез витамина В1

Методы определения витаминов

1 Биологические методы

2 Химические методы

3 Физические методы

4 Физико-химические методы

Аналитическое определение витамина В1 (экспериментальная часть)

1 Потенциометрическое определение витамина В1

2 Аргентометрическое определение витамина В1

Заключение


Введение


В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции; каждый из витаминов требует особого аналитического подхода.

Химическая структура витамина В1 (антиневритический витамин, аневрин, бери-бери витамин, анти-бери-бери витамин), позволяет применить различные методы химического и физико-химического количественного определения:

кислотно-основное титрование, осадительное титрование (аргентометрия), физико-химические методики (спектрофотометрические), гравиметрия.

Целью данной курсовой работы, является количественное определение витамина В1. Было выбрано два способа количественного определения- химический и физико-химический методы.

Задачи курсовой работы: Произвести анализ литературы, выполнить два количественных определения тиамина- потенциометрическим титрованием и аргентометрическим методом.


1. Определение витамина В1 (обзор литературы)


1 Историческая справка


Всем известное слово "витамин" происходит от латинского "vita" - жизнь. Такое название эти разнообразные органические соединения получили далеко не случайно: роль витаминов в жизнедеятельности организма чрезвычайно велика.

Витамины представляют собой группу разнообразных по строению химических веществ, принимающие участие во многих реакциях клеточного метаболизма. Они не являются структурными компонентами живой материи и не используются в качестве источников энергии. Большинство витаминов не синтезируются в организме человека и животных, но некоторые синтезируются микрофлорой кишечника и тканями в минимальных количествах, поэтому основным источником этих веществ является пища.

Ко второй половине XIX века было выявлено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря исследованиям русского ученого Николая Ивановича Лунина.

Он провел эксперимент с мышами, разделив их на 2 группы. Одну группу он кормил натуральным цельным молоком, а другую держал на искусственной диете, состоящей из белка-казеина, сахара, жира, минеральный солей и воды.

Через 3 месяца мыши второй группы погибли, а первой остались здоровыми. Этот опыт показал, что помимо питательных веществ, для нормальной жизнедеятельности организма, необходимы еще какие-то компоненты. Это было важное научное открытие, опровергавшее установившееся положения в науке о питании.

Блестящим подтверждением правильности вывода Н. И. Лунина установлением причины болезни бери-бери.

В 1896 году английский врач Эйкман заметил, что куры, питавшиеся полированным рисом, страдали нервным заболеванием, напоминавшим бери-бери у людей. После дачи курам неочищенного риса заболевание прекратилось. Он сделал вывод, что витамин содержится в оболочке зерен. В 1911 году польский ученый Казимир Функ выделил витамин в кристаллическом виде. Окончательное строение витамина В1 было установлено в 1973 году.

По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ, полагая, что во всех подобных веществах обязательно должны входить аминные группировки, предложил называть эти неизвестные вещества витаминами, т.е. аминами жизни. В дальнейшем было установлено, что многие из них аминных групп не содержат, но термин «витамин» прижился в науке и практике.

Согласно классическому определению, витамины - это необходимые для нормальной жизнедеятельности низкомолекулярные органические вещества, которые не синтезируются организмом данного вида или синтезируются в количестве, недостаточном для обеспечения жизнедеятельности организма. Витамины необходимы для нормального протекания практически всех биохимических процессов в нашем организме.


2 Классификация витаминов


Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины. В приводимой классификации витаминов, помимо буквенного обозначения, в скобках указан основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.

Витамины, растворимые в жирах

Витамин Л (антиксерофгальмический); ретинол

Витамин D (антирахитический); кальциферолы

Витамин Е (антистерильный, витамин размножения); токоферолы

Витамин К (антигеморрагический); нафтохиноны

Витамины, растворимые в воде

.Витамин В1 (антиневритный); тиамин

.Витамин В2 (витамин роста); рибофлавин

.Витамин В6 (антидерматитный, адермин); пиридоксин

.Витамин В12 (антианемический); цианкобаламии; кобаламин

.Витамин РР (антипеллагрический, ниацин); никотинамид

.Витамин Н (антисеборейный, фактор роста бактерий, дрожжей и грибков); биотин

.Витамин С (антискорбутный): аскорбиновая кислота


3 Строение и свойства витамина В1

Витамин В1-тиамин является хлористоводородной солью 4-метил-5-?-оксиэтил- N - (2-метил-4-амино-5-метилпиримидил) -тиазолийхлорида, получается синтетически обычно в виде хлористо-или бромистоводородной соли. В его структуру входят такие гетероциклические системы, как пиримидил и тиазол.

Витамин В1- белый кристаллический порошок горького вкуса, с характерным запахом, хорошо растворяется в воде(1г в 1 мг), ледяной уксусной кислоте, в этиловом спирте. В сильнокислой водной среде тиамин обладает высокой устойчивостью и не разрушается под действием таких энергичных окислителей, как перекись водорода, марганцовокислый калий и озон. При рН=3,5 тиамин может нагреваться до температуры 120ºС без заметных признаков разложения.

Витамин В1 способен окисляться. В щелочной среде под действием красной кровяной соли тиамин переходит в тиохром. Превращение тиамина в тиохром количественный необратимый процесс.

Эта реакция положена в основу одного из количественных методов определения витамина В1. Превращение тиамина в тиохром сопровождается утратой витаминной способности.


1.4 Синтез


Учитывая особенности строения витамина В1, его синтез может быть осуществлен тремя путями: конденсацией пиримидинового и тиазольного компонентов, на основе пиримидинового компонента и на основе тиазольного компонента.

Рассмотрим первый вариант. Оба компонента синтезируются параллельно, а затем соединяются в молекулу тиамина. Конкретно 2- метил-4-амино-5 хлорметилпиримидин взаимодействует с 4-метил-5-оксиэтиазолом, образуя четвертичную тиазолевую соль:

Конденсация проходит при температуре 1200С в толуоле или бутиловом спирте. Далее полученный тиамин выделяют из реакционной смеси осаждением ацетоном и очищают перекристаллизацией из метанола.


5 Распространение в природе и применение


Тиамин распространен повсеместно и обнаруживается у разных представителей живой природы. Как правило, количество его в растениях и микроорганизмах достигает величин значительно более высоких, чем у животных. Кроме того, в первом случае витамин представлен преимущественно свободной, а во втором - фосфорилированной формой. Содержание тиамина в основных продуктах питания колеблется в довольно широких пределах в зависимости от места и способа получения исходного сырья, характера технологической обработки полупродуктов и т. п.

В злаковых семенах растений тиамин, подобно большинству водорастворимых витаминов, содержится в оболочке и зародыше. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний (неврозов, полиневритов), сердечно - сосудистых расстройств(гипертония) и др.

Витаминизация хлебобулочных изделий и комбикормов в животноводстве и птицеводстве.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.


2. Методы определения витаминов


Все методы исследования витаминов подразделяются на биологические (микробиологические), физические, химические и физико-химические.


1 Биологические методы


Несмотря на то, что биологические методы определения некоторых витаминов отличаются высокой чувствительностью и могут использоваться для исследования образцов с незначительным содержанием этих соединений, в настоящее время они представляют главным образом исторический интерес. Точность этих методов невысока, кроме того биологические методы требуют больших затрат времени и средств и неудобны для проведения серийных анализов.

Микробиологические методы основаны на измерении скорости роста бактерий, которая пропорциональна концентрации витамина в исследуемом объекте.


2.2 Химические методы


Специфичность свойств витаминов обусловлена наличием в их молекулах функциональных групп. Это свойство широко используется при количественном и качественном химическом анализе.

Химические методы анализа:

) Фотометрический;

) Титриметрический(заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V);

3) Гравиметрический(заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения(метод отгонки). Аналитический сигнал-масса);

) Оптический(основан на поглощении системой некоторого количества лучистой энергии атомами. Количество энергии поглощения находится в прямой зависимости от концентрации вещества в растворе).


3 Физические методы


Применение физических методов в анализе витаминов (например, ПМР) ограничено высокой стоимостью приборов.

Кондуктометрический - основан на измерении электропроводности раствора.

Потенциометрический(в основе метода лежит измерение зависимости равновесного потенциала электрода от активности(концентрации) определяемого иона определяемого иона. Для измерений необходимо сравнивать элемент из подходящего индикаторного электрода и электрода сравнения).

Масс-спектральный - применяется при помощи сильных элементов и магнитных полей, происходит разделение газовых смесей на компоненты в соответствии с атомами или молекулярными массами компонентов. Применяется при исследовании смеси изотопов, инертных газов, смесей органических веществ.


4 Физико-химические методы


В настоящее время в практике фармацевтического анализа находят все большее применение физико-химические методы анализа, как наиболее точные и экспрессные по своему исполнению. К ним относятся оптические, электрохимические и хроматографические методы анализа.

Среди оптических методов наибольшее распространение получили спектрофотометрические и фотоколориметрические методы, основанные на общем принципе - существовании в известных границах концентраций прямой пропорциональной зависимости между светопоглощением раствора и концентрацией растворенного вещества. Спектрофотометрический анализ по непосредственному измерению оптической плотности может быть проведен для веществ, обладающими определенными особенностями строения - в структуре должны быть хромофорные и ауксохромные группы (например, гетероатомы, системы сопряженных связей).

К достоинствам колориметрических (фотометрических) методов можно отнести доступность оборудования и средств измерения, экспрессность. Основным недостатком является низкая селективность, препятствующая применению этих методов к сложным по составу объектам. Сказывается влияние сопутствующих компонентов: провитаминов, антиоксидантов, производных витаминов, продуктов деструкции витаминов, способных подобно витаминам, давать окрашенные продукты. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином.

Несмотря на недостатки этого метода, для многих витаминов разработаны методики фотометрического определения.

Несмотря на разнообразие методик фотометрического определения витаминов ученые до сих пор интересуются этим методом, унифицируют старые методики и создают новые.

Хроматографические методы анализа очень распространены в фармацевтической практике. Эти методы перспективны при анализе веществ, содержащих витамины и имеющих сложную структуру.

Вплоть до относительно недавнего времени наиболее часто из хроматографических методов использовали газожидкостную хроматографию (ГЖХ).

В настоящее время альтернативным способом быстрого определения витаминов в разнообразных объектах является высокоэффективная жидкостная хроматография (ВЭЖХ).

Определение витаминов методом высокоэффективной жидкостной хроматографии не требует длительной пробоподготовки, достаточно высока чувствительность метода, однако высокая стоимость оборудования существенно ограничивает применение этого метода.

Электрохимические методы анализа основаны на использовании ионообменных или электрообменных процессов, протекающих на поверхности электрода или в при электродном пространстве. Аналитическим сигналом служит любой электрический параметр (потенциал, сила тока, сопротивление, электропроводность и т.д.), функционально связанный с составом и концентрацией раствора.

Электрохимические методы анализа играют важную роль в современной фармацее, поскольку характеризуются высокой чувствительностью, низкими пределами обнаружения, широким интервалом определяемых содержаний. Самыми распространенными методами являются полярография и вольтамперометрия. Литературные данные по полярографическому исследованию витаминов самые многочисленные. Полярографически можно определять количественное содержание каждого витамина в индивидуальных и в сложных фармацевтических препаратах.

Метод достаточно чувствительный, но использование полярографии ограничено применением токсичного ртутного электрода.

Вместе с тем метод потенциометрического титрования является экспрессным, простым в выполнении, не требует дорогостоящего оборудования и реактивов.


3. Экспериментальная часть


1 Потенциометрическое определение витамина В1


В структуру витамина В1 входит подвижный хлор (С12Н18ОN4Cl2S):


витамин тиамин титрование потенциометрический

Это дало возможность использовать осадительное потенциометрическое титрование для определения тиамина. В качестве индикаторного электрода использовался серебряный электрод. Титрантом служил раствор нитрата серебра с концентрацией 0,05 моль/л.

Для проведения анализа готовили растворы с концентрацией витамина В1 0,02968моль/л. Для этого содержимое 10 ампул количественно переносили в колбу на 50 мл и доводили до метки дистиллированной водой. Объем ампул равен 1 мл, содержание витамина В1 - 50 мг (Производитель: ОАО «Мосхимфармпрепараты» им. Н.А.Семашко). Отбирали аликвоты, объемом по 5 мл и проводили потенциометрическое титрование. Эквивалентный объем раствора нитрата серебра при титровании 5 мл раствора витамина 6 мл. Было выполнено 8 потенциометрических измерений.

Примеры кривых титрования представлены на рисунках 1, 2, 3, 4, 5. Кривые титрования построены в координатах- интегральные кривые V, мл- Е, Вт, а дифференциальные кривые в координатах - ?V -


Рис.1 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.2 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.3 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.4 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.5 Кривая потенциометрического титрования витамина В1(Val=5 мл)


где ТAgNO3/вит.В1.= (0,05*337)/1000=0,01685г/мл; Vэ- объем нитрата серебра, пошедший на титрование.



где Vколбы = 50мл, ТAgNO3/вит.В1 =0,008425г/мл, Vэ - объем нитрата серебра, пошедший на титрование, Val = 5 мл, N - число ампул (10 шт).

Результаты анализа представлены в таблице 1.


Таблица 1. Результаты анализа потенциометрического титрования.

№V, мла, мгm, г160.10110,05055260.10110,0505536,50,10950,05476460.10110,05055560.10110,05055660.10110,05055760.10110,05055860.10110,05055<среднее>6,06250,102150,051076

где x - "подозрительное" значение (вероятный промах) - это максимальное или минимальное значение выборки, xближайшее - ближайшее к подозрительному значение, xmin и xmax - максимальное и минимальное значения выборки. Значение Q сравнивают с табличным значением(Таблица 2). Доверительную вероятность берут равной 0.90 или 0.95. Если Q> Qтабл - подозрительный результат является промахом и исключается из дальнейшего рассмотрения;Q< Qтабл - подозрительный результат не является промахом.


Таблица 2. Критические значения Q-критерия для различной доверительной вероятности p и числа измерений n.

np0.900.950.9930.9410.9700.99440.7650.8290.92650.6420.7100.82160.5600.6250.74070.5070.5680.68080.4680.5260.63490.4370.4930.598100.4120.4660.568

Вычисления: n=8; р=0.90;= =1,0>0,468 критерий свидетельствует, что результат является промахом, и мы его не учитываем.

Исключая промах получаем m= 0,05055 г, по нормативным документам содержание витамина В1 должно быть равным 0,05 г.

Погрешность составляет:

Х= 0,05055-0,05= 0,00055 г

1,1%

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА:


Таблица 3. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000


. Доверительный интервал:

0,05055


3.2 Аргентометрическое определение витамина В1


Аргентометрическое определение по методу Фаянса,. Метод Фаянса - это метод прямого титрования галогенидов раствором AgNO30,1М в слабо кислой среде с применением адсорбционных индикаторов, которые показывают изменение цвета не в растворах, а на поверхности выпавшего осадка. Использовали раствор, приготовленный для первого метода количественного определения тиамина с концентрацией витамина 0,02968моль/л. Val= 5 мл. Прибавляли 2-3 капли раствора бромфенолового синего и по каплям разведенную уксусную кислоту до получения зеленовато-желтого окрашивания. Полученный раствор титровали 0,1 М раствором нитрата серебра до фиолетовой окраски.

Титрование идет по уравнению:


12Н17N4ОS)Cl- .HCl +2AgNO3= 2AgCl + (С12Н17N4ОS)NO3- .HNO3



Таблица 4. Результаты аргентометирического определения витамина В1

№V, млm, г11,50,0505521,50,0505531,50,0505541,50,0505551,40,0471861,50,0505571,50,0505581,50,0505591,40,04718101,50,05055<среднее>1,480,04988

Приведённые результаты свидетельствуют о наличии выпадающих результатов. Определение промахов ведем по Q-критерию: Тестовая статистика Q-критерия вычисляется по формуле:

Вычисления: n=10; р=0.90;

> 0,412критерий свидетельствует, что результат является промахом, и мы его не учитываем в дальнейших расчетах.

1.Установление титра AgNO3 0,1 N по раствору NaCl 0,1 N


= ;


V-объем AgNO3, пошедший на титрование, мл.

2.Погрешность составляет:

Х= 0,05055 -0,05= 0,00055 г

1,1%

Математическая обработка результатов КХА (количественного химического анализа)

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА


Таблица 5. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000



. Доверительный интервал:

Верхнюю и нижнюю границы интервала, в котором погрешность результатов КХА находится с доверительной вероятностью 0,95, определяли следующим образом:

0,05055


Заключение


В данной курсовой работе стояла задача количественно определить витамин В1. Для определения витаминов применяют различные методы. Так же необходимо учитывать химическое строение каждого витамина. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. Было выбрано два метода определения тиамина:

.Потенциометрическое титрование, который имеет ряд преимуществ по сравнению с существующими методами анализа фармпрепаратов, на содержание в них витаминов: метод прост, экспрессен, не требует дорогостоящего оборудования, расход реактивов минимален, исключено влияние субъективных факторов.

По этому методу ошибка составляет 1,1%.

.Титрование, заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V

В данном методе определения тиамина ошибка составляет 1,1%.

Доверительный интервал: 0,05055.


Список используемой литературы


1. Биохимия: учеб.для вузов 3-е изд., стереотип. / В.П. Комов; В.Н. Шведова М.: Дрофа, 2008. -638 с.

Химия витаминов/ В.М. Березовский М.: «Пищевая промышленность», 1973. -632 с.

Основы аналитической химии книга 2 методы химического анализа / Ю.А. Золотов «Высшая школа» год; 2002. -494 с.

4. Аналитическая химия, учебное пособие/ Н.Я. Логинов; А.Г.Воскресенский; И.С. Солодкин-. М.: «Просвещение» 1975.- 478 с.

5. Михеева Е.В. Вольтамперометрическое определение водорастворимых витаминов В1 и В2 в витаминизированных подкормках и кормах./ Е. В. Михеева, Л. С. Анисимова // Материалы 6 конференции « Аналитика Сибири и Дальнего Востока» г.Новосибирс.-2000.-с.367.

Химические методы в количественном анализе лекарственных средств: Методическое указание для студентов V курса по «Контроль качества лекарственных средств»/ Государственный Университет Медицины и Фармации им. Н. Тестемицану.- Кишинэу.- 2008

ГОСТ 29138-91

8. Л.Н. Корсун, Г.Н. Баторова, Э.Т. Павлова/- Математическая обработка результатов химического эксперимента: учебное пособие для студентов химических, медицинских и биологических специальностей и направлений-Улан-Удэ.- 2011.-70 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.