Главная · Изжога и отрыжка · Нейронные сети в кардиологии. Уфимские студенты применяют нейронные сети в медицине. Где взять медицинские данные для обучения ИИ

Нейронные сети в кардиологии. Уфимские студенты применяют нейронные сети в медицине. Где взять медицинские данные для обучения ИИ

Факультет: вычислительной техники и информатики
Кафедра: компьютерных систем мониторинга
Специальность: компьютерный эколого-экономический мониторинг
Тема магистерской диссертации:
"Скрытая передача больших массивов информации путем стегокодирования WAV-файлов"
Научный руководитель: Губенко Наталья Евгеньевна, доцент, к.т.н.

Тезисы к докладу на конференции "Компьютерный мониторинг и информационые технологии 2008" на тему "Применение нейронных сетей в медицине"

Использование нейросетей в медицине, как правило, связано с системами для диагностики и дифференциальной диагностики заболеваний. Однако обученная нейросеть не только умеет распознавать примеры, но и хранит достаточно важную информацию. Поэтому одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев.

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины. Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть!

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

Прогностические нейросетевые модели могут использоваться в демографии и организации здравоохранения. Создана экспертная система, предсказывающая, умрет ли человек (в возрасте 55 лет и старше) в ближайшие 10 лет. Прогноз делается по результатам ответов на 18 вопросов анкеты. В анкету включены такие вопросы, как раса, пол, возраст, вредные привычки, семейное положение, семейный доход. 4 из 18 вопросов выявляют индекс массы тела (body mass index) в различные периоды жизни респондента. Индекс рассчитывается как отношение веса к квадрату роста (индекс более 27 кг/м считается тучностью). Повышенное внимание к этому показателю говорит о его значимости для прогноза жизни.

Литература

  1. Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин и др. - Новосибирск: Наука. Сибирское предприятие РАН, 1998. - 296с.
  2. С.Короткий Нейронные сети: основные положения
  3. Е. Монахова, "Нейрохирурги" с Ордынки, PC Week/RE, №9, 1995

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_1.jpg" alt=">Нейронные сети в медицине StatSoft Russia">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_2.jpg" alt=">Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные"> Основные идеи нейросетевых методов анализа Простота и однородность отдельных элементов - «нейронов» Все основные свойства сети определяются структурой связей Избыточность системы гарантирует ее надежность как целого Связи формируются по неявным правилам в процессе «обучения»

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_3.jpg" alt=">Примеры искусственных нейронных сетей">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_4.jpg" alt=">Особенности нейросетевого подхода к анализу данных Предлагает стандартный способ решения многих нестандартных задач. Явное"> Особенности нейросетевого подхода к анализу данных Предлагает стандартный способ решения многих нестандартных задач. Явное описание модели заменяется созданием «образовательной среды». Приводит к успеху там, где отказывают традиционные методы и трудно создать явный алгоритм.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_5.jpg" alt=">Для практического здравоохранения особый интерес представляют экспертные системы для диагностики заболеваний">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_6.jpg" alt=">Примеры применения нейронных сетей в медицине Выявление атеросклеротических бляшек с помощью анализа флюоресцентных спектров."> Примеры применения нейронных сетей в медицине Выявление атеросклеротических бляшек с помощью анализа флюоресцентных спектров. Диагностика заболеваний периферических сосудов. Диагностика инфаркта миокарда. Диагностика клапанных шумов сердца с помощью анализа акустических сигналов. Распознавание психических симптомов.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_7.jpg" alt=">Экспертная система для лечения артериальной гипертонии (Италия) Модуль 1 Модуль 2 Модуль 3 Почасовые"> Экспертная система для лечения артериальной гипертонии (Италия) Модуль 1 Модуль 2 Модуль 3 Почасовые измерения давления Возраст и пол Характеристики состояния Характеристики лекарственных препаратов Структура почасового приема препаратов Другие клинические данные

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_8.jpg" alt=">Определение накопленной дозы радиоактивного облучения (Красноярская мед. академия) Классификация на 4 группы по"> Определение накопленной дозы радиоактивного облучения (Красноярская мед. академия) Классификация на 4 группы по величине накопленной дозы облучения 35 входных параметров Естественная Слабая Средняя Сильная Сеть обучалась на данных о пациентах, работающих в атомной промышленности. Со 100% правильностью такая сеть классифицирует состояние людей, в том числе и тех, кто не работает в данной отрасли.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_9.jpg" alt=">Этапы нейросетевого анализа Исследование взаимосвязи переменных и понижение размерности Построение и обучение сетей"> Этапы нейросетевого анализа Исследование взаимосвязи переменных и понижение размерности Построение и обучение сетей разных типов Сравнение качества сетей и их статистических характеристик

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_10.jpg" alt=">Понижение размерности: отбор входных признаков Штраф за элемент, число популяций и поколений битовых"> Понижение размерности: отбор входных признаков Штраф за элемент, число популяций и поколений битовых строк Генетический алгоритм, пошаговое включение и исключение признаков

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_11.jpg" alt=">Понижение размерности: автоассоциативные сети Новые входные переменные для нейросетевой модели">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_12.jpg" alt=">Задача классификации состояния больных с ишемической болезнью">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_13.jpg" alt=">Нейронная сеть для диагностики развития ишемической болезни По набору показателей (48 переменных), "> Нейронная сеть для диагностики развития ишемической болезни По набору показателей (48 переменных), как номинальных (например, «слабая-умеренная-сильная боль»), так и непрерывных (например, артериальное давление или возраст), классифицируется состояние пациентов с ишемической болезнью сердца. Номинальные переменные Непрерывные переменные

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_14.jpg" alt=">Результаты классификации и анализ чувствительности Все наблюдения классифицированы правильно Анализ чувствительности позволяет утверждать,"> Результаты классификации и анализ чувствительности Все наблюдения классифицированы правильно Анализ чувствительности позволяет утверждать, что одним из важнейших факторов риска является привычка к курению.

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_15.jpg" alt=">Задача диагностики онкологического заболевания">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_16.jpg" alt=">Нейронные сети для диагностики онкологического заболевания Сеть на радиальных базисных функциях Многослойный персептрон">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_17.jpg" alt=">Результаты классификации Многослойный персептрон: 100% наблюдений классифицировано правильно Радиальные базисные функции: 95% наблюдений классифицировано"> Результаты классификации Многослойный персептрон: 100% наблюдений классифицировано правильно Радиальные базисные функции: 95% наблюдений классифицировано правильно

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_18.jpg" alt=">Настройка сети">

Src="https://present5.com/presentacii-2/20171208%5C21538-neuronet.ppt%5C21538-neuronet_19.jpg" alt=">Библиотеки функций пакета STATISTICA Neural Networks для построения, обучения и работы нейронных сетей"> Библиотеки функций пакета STATISTICA Neural Networks для построения, обучения и работы нейронных сетей позволяют эффективно встраивать нейросетевые модули в разрабатываемые экспертные системы для прогнозирования и диагностики заболеваний

- 26.76 Кб

Нейронные сети в медицине

Александр Ежов, Владимир Чечеткин

Институт инновационных и термоядерных исследований, Троицк

[email protected]

Конкретные системы

Борьба с раком

Нейросистемы, генетика и молекулы

Нейросети шагают по планете

Вместо заключения

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии.

Статистика такова: врач правильно диагностирует инфаркт миокарда у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть - многослойный персептрон - для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика - специфичность метода - будет равна 70%.

Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность - во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться прежде всего обеспечить стопроцентную чувствительность метода - нельзя пропускать заболевание. Но в это оборачивается, как правило, низкой специфичностью метода - у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев. Однако после более внимательного знакомства с этой экспертной системой врачи значительно усовершенствовали традиционные методы диагностики, и MYCIN потерял свое значение, превратившись в учебную систему. Экспертные системы "пошли" только в кардиологии - для анализа электрокардиограмм. Сложные правила, которые составляют главное содержание книг по клиническому анализу ЭКГ, использовались соответствующими системами для выдачи диагностического заключения.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий - они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Конкретные системы

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

В медицине находит применение и другая особенность нейросетей - их способность предсказывать временные последовательности. Уже отмечалось, что экспертные системы преуспели в анализе ЭКГ. Нейросети здесь тоже приносят пользу. Ки Чженху, Ю Хену и Виллис Томпкинс из университета штата Висконсин разработали нейросетевую систему фильтрации электрокардиограмм, позволяющую подавлять нелинейный и нестационарный шум значительно лучше, чем ранее использовавшиеся методы. Дело в том, что нейросеть хорошо предсказывала шум по его значениям в предыдущие моменты времени. А то, что нейросети очень эффективны для предсказания временных последовательностей (таких, например, как курс валют или котировки акций), убедительно продемонстрировали результаты соревнования предсказательных программ, проводимых университетом в Санта Фе - нейросети заняли первое место и доминировали среди лучших методов.

Возможности применения нейросетей

ЭКГ - это частное, хотя и исключительно важное приложение. Однако сегодня существует и много других примеров использования нейросетей для медицинских прогнозов. Известно, что длинные очереди в кардиохирургические отделения (от недель до месяцев) вызваны нехваткой реанимационных палат. Увеличить их число не удается из-за высокой стоимости реанимационной помощи (70% средств американцы тратят в последние 2 недели жизни именно в этом отделении).

Выход только в более эффективном использовании имеющихся средств. Предположим, что состояние прооперированных в некоторый день больных настолько тяжелое, что им необходимо их длительное пребывание в реанимационной палате (более двух суток). Все это время хирурги будут простаивать, поскольку вновь прооперированных больных некуда класть. Тяжелых больных разумнее оперировать перед выходными или праздниками - операционные все равно закрыты в эти дни, хирурги будут отдыхать, а больные восстанавливаться в реанимации. А вот в начале рабочей недели лучше прооперировать тех пациентов, которым нужно будет находиться в реанимационной палате только один-два дня. Тогда койки в реанимации будут освобождаться быстрее и принимать новых, прооперированных во вторник и среду больных.

Вопрос в том, как угадать, кому придется надолго задержаться в блоке интенсивной терапии после операции, а кому - нет. Джек Ту и Майкл Гуэрир из госпиталя Святого Михаила университета в Торонто использовали нейронные сети для такого предсказания. В качестве исходных данных они взяли только те сведения о пациенте, которые известны в предоперационный период. Заметим, что в предшествующих работах, не использующих нейронные сети, в качестве факторов повышенного риска пребывания в реанимации применялись также важные послеоперационные сведения - различные осложнения, возникшие в ходе хирургического вмешательства.

Ту и Гуэрир обучили двухслойный персептрон разделять больных на три группы риска, учитывая их возраст, пол, функциональное состояние левого желудочка, степень сложности предстоящей операции и наличие сопутствующих заболеваний. Из тех пациентов, которых сеть отнесла к группе малого риска задержки в реанимации, только 16,3% действительно провели в ней более двух дней. В то же время свыше 60% из тех, кого сеть отнесла в группу повышенного риска, оправдали неблагоприятный прогноз.

Борьба с раком

Мы уделяли особое внимание сердечно-сосудистым заболеваниям, поскольку именно они удерживают печальное лидерство в списке причин смертности. На втором месте находятся онкологические заболевания. Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины.

Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть! В клинике Майо (Миннесота) нейросеть анализировала результаты ультразвукового исследования молочной железы и обеспечила специфичность 40%, в то время как для тех же женщин специфичность заключения радиологов оказалась нулевой. Не правда ли, успех использования нейросетевых технологий выглядит совсем не случайным?

После лечения рака молочной железы возможны рецидивы возникновения опухоли. Нейросети уже помогают эффективно их предсказывать. Подобные исследования проводятся на медицинском факультете Техасского университета. Обученные сети показали свои способности выявлять и учитывать очень сложные связи прогностических переменных, в частности, их тройные связи для улучшения предсказательной способности.

Разнообразны возможности применения нейросетей в медицине, и разнообразна их архитектура. На основе прогноза отдаленных результатов лечения заболевания тем или иным методом можно предпочесть один из них. Значительного результата в прогнозе лечения рака яичника (болезнь каждой семидесятой женщины) добился известный голландский специалист Герберт Каппен из университета в Нимегене (он использует в своей работе не многослойные персептроны, а так называемые Машины Больцмана - нейросети для оценки вероятностей).

А вот пример другого онкологического заболевания. Исследователи из медицинской школы в Кагаве (Япония) обучили нейросеть, которая практически безошибочно прогнозировала по предоперационным данным результаты резекции печени у больных печеночно-клеточной карциномой.

В Троицком институте инновационных и термоядерных исследований (ТРИНИТИ) в рамках реализуемого Министерством науки проекта создания нейросетевых консультационных систем была разработана нейросетевая программа, которая выбирает метод лечения базальноклеточного рака кожи (базалиомы) на основе долгосрочного прогноза развития рецидива. Число заболеваний базалиомой - онкологическим недугом белокожих людей с тонкой кожей - составляет треть всех онкологических заболеваний.

Диагностика одной из форм меланомы - опухоли, которую иногда непросто отличить от пигментной формы базалиомы, была реализована с помощью нейросетевого симулятора Multineuron, разработанного в ВЦ СОАН в Красноярске под руководством А.Н.Горбаня.

Краткое описание

Нейронные сети для задач диагностики

Конкретные системы

Возможности применения нейросетей

Борьба с раком

Нейросистемы, генетика и молекулы

Нейросети шагают по планете

Нейронные сети в медицине

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии.

Статистика такова: врач правильно диагностирует инфаркт миокарда у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть - многослойный персептрон - для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика - специфичность метода - будет равна 70%.


Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность - во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться прежде всего обеспечить стопроцентную чувствительность метода - нельзя пропускать заболевание. Но в это оборачивается, как правило, низкой специфичностью метода - у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев. Однако после более внимательного знакомства с этой экспертной системой врачи значительно усовершенствовали традиционные методы диагностики, и MYCIN потерял свое значение, превратившись в учебную систему. Экспертные системы "пошли" только в кардиологии - для анализа электрокардиограмм. Сложные правила, которые составляют главное содержание книг по клиническому анализу ЭКГ, использовались соответствующими системами для выдачи диагностического заключения.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий - они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Конкретные системы

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

В медицине находит применение и другая особенность нейросетей - их способность предсказывать временные последовательности. Уже отмечалось, что экспертные системы преуспели в анализе ЭКГ. Нейросети здесь тоже приносят пользу. Ки Чженху, Ю Хену и Виллис Томпкинс из университета штата Висконсин разработали нейросетевую систему фильтрации электрокардиограмм, позволяющую подавлять нелинейный и нестационарный шум значительно лучше, чем ранее использовавшиеся методы. Дело в том, что нейросеть хорошо предсказывала шум по его значениям в предыдущие моменты времени. А то, что нейросети очень эффективны для предсказания временных последовательностей (таких, например, как курс валют или котировки акций), убедительно продемонстрировали результаты соревнования предсказательных программ, проводимых университетом в Санта Фе - нейросети заняли первое место и доминировали среди лучших методов.

Возможности применения нейросетей

ЭКГ - это частное, хотя и исключительно важное приложение. Однако сегодня существует и много других примеров использования нейросетей для медицинских прогнозов. Известно, что длинные очереди в кардиохирургические отделения (от недель до месяцев) вызваны нехваткой реанимационных палат. Увеличить их число не удается из-за высокой стоимости реанимационной помощи (70% средств американцы тратят в последние 2 недели жизни именно в этом отделении).

Выход только в более эффективном использовании имеющихся средств. Предположим, что состояние прооперированных в некоторый день больных настолько тяжелое, что им необходимо их длительное пребывание в реанимационной палате (более двух суток). Все это время хирурги будут простаивать, поскольку вновь прооперированных больных некуда класть. Тяжелых больных разумнее оперировать перед выходными или праздниками - операционные все равно закрыты в эти дни, хирурги будут отдыхать, а больные восстанавливаться в реанимации. А вот в начале рабочей недели лучше прооперировать тех пациентов, которым нужно будет находиться в реанимационной палате только один-два дня. Тогда койки в реанимации будут освобождаться быстрее и принимать новых, прооперированных во вторник и среду больных.

Вопрос в том, как угадать, кому придется надолго задержаться в блоке интенсивной терапии после операции, а кому - нет. Джек Ту и Майкл Гуэрир из госпиталя Святого Михаила университета в Торонто использовали нейронные сети для такого предсказания. В качестве исходных данных они взяли только те сведения о пациенте, которые известны в предоперационный период. Заметим, что в предшествующих работах, не использующих нейронные сети, в качестве факторов повышенного риска пребывания в реанимации применялись также важные послеоперационные сведения - различные осложнения, возникшие в ходе хирургического вмешательства.

Ту и Гуэрир обучили двухслойный персептрон разделять больных на три группы риска, учитывая их возраст, пол, функциональное состояние левого желудочка, степень сложности предстоящей операции и наличие сопутствующих заболеваний. Из тех пациентов, которых сеть отнесла к группе малого риска задержки в реанимации, только 16,3% действительно провели в ней более двух дней. В то же время свыше 60% из тех, кого сеть отнесла в группу повышенного риска, оправдали неблагоприятный прогноз.

Борьба с раком

Мы уделяли особое внимание сердечно-сосудистым заболеваниям, поскольку именно они удерживают печальное лидерство в списке причин смертности. На втором месте находятся онкологические заболевания. Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины.

Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть! В клинике Майо (Миннесота) нейросеть анализировала результаты ультразвукового исследования молочной железы и обеспечила специфичность 40%, в то время как для тех же женщин специфичность заключения радиологов оказалась нулевой. Не правда ли, успех использования нейросетевых технологий выглядит совсем не случайным?

После лечения рака молочной железы возможны рецидивы возникновения опухоли. Нейросети уже помогают эффективно их предсказывать. Подобные исследования проводятся на медицинском факультете Техасского университета. Обученные сети показали свои способности выявлять и учитывать очень сложные связи прогностических переменных, в частности, их тройные связи для улучшения предсказательной способности.

Разнообразны возможности применения нейросетей в медицине, и разнообразна их архитектура. На основе прогноза отдаленных результатов лечения заболевания тем или иным методом можно предпочесть один из них. Значительного результата в прогнозе лечения рака яичника (болезнь каждой семидесятой женщины) добился известный голландский специалист Герберт Каппен из университета в Нимегене (он использует в своей работе не многослойные персептроны, а так называемые Машины Больцмана - нейросети для оценки вероятностей).

А вот пример другого онкологического заболевания. Исследователи из медицинской школы в Кагаве (Япония) обучили нейросеть, которая практически безошибочно прогнозировала по предоперационным данным результаты резекции печени у больных печеночно-клеточной карциномой.

В Троицком институте инновационных и термоядерных исследований (ТРИНИТИ) в рамках реализуемого Министерством науки проекта создания нейросетевых консультационных систем была разработана нейросетевая программа, которая выбирает метод лечения базальноклеточного рака кожи (базалиомы) на основе долгосрочного прогноза развития рецидива. Число заболеваний базалиомой - онкологическим недугом белокожих людей с тонкой кожей - составляет треть всех онкологических заболеваний.

Диагностика одной из форм меланомы - опухоли, которую иногда непросто отличить от пигментной формы базалиомы, была реализована с помощью нейросетевого симулятора Multineuron, разработанного в ВЦ СОАН в Красноярске под руководством А.Н.Горбаня.

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Специалисты Института рака разбили известные онкологические препараты на шесть групп в соответствии с механизмом их действия на раковые клетки и обучили многослойные сети классифицировать новые вещества и распознавать их действие. В качестве исходных данных использовались результаты экспериментов по подавлению роста клеток из различных опухолей. Нейросетевая классификация позволяет определить, какие из сотен ежедневно апробируемых молекул стоит изучать далее в весьма дорогих экспериментах in vitro и in vivo. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Нейросистемы, генетика и молекулы

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

В 1996 году было сделано сенсационное открытие, связавшее фундаментальные исследования в молекулярной генетике с проблемой патогенеза и лечения самого распространенного онкологического заболевания - базальноклеточного рака кожи. Исследователи обнаружили в девятой хромосоме человека ген (PTC), мутации в котором, в отличие от гена p53, вызваны воздействием ультрафиолета и являются причиной развития опухоли. Ключом к открытию стало изучение так называемого заплаточного гена, изменения в котором стимулировали дефекты развития плодовой мушки и тот факт, что у детей, также страдающих дефектами развития костной ткани (базальный невусный синдром), часто имеются множественные базалиомы.

Теперь генетики и врачи преисполнены надежд найти медикаментозное средство лечения базалиомы или использовать методы генной хирургии, и заменить ими такие нещадящие методы лечения, как обычная лазерная, рентгеновская и криохирургия. Могут ли нейронные сети оказаться полезными для этих исследований? В частности, нельзя ли с их помощью оценить возможное влияние определенной мутации на изменение свойств соответствующих белков или оценить ее прогностическое значение, скажем, для развития рецидива рака молочной железы?

Если бы это можно было сделать, то нейросети значительно уменьшили бы область поиска для молекулярных биологов, часто "на ощупь" проводящих очень дорогостоящие эксперименты по оценке роли мутаций в молекуле ДНК. Напомним, что к развитию злокачественных опухолей приводит неконтролируемый рост и деление клеток. Геном человека, в котором записана информация о всех производимых в организме белках, насчитывает около трех миллиардов нуклеотидов. Но только 2-3% из них действительно кодируют белки - остальные нужны самой ДНК для поддержания правильной структуры, репликации и прочего.

В геномных последовательностях ДНК можно приближенно выделить три составляющие: в первой содержатся многочисленные копии одинаковых фрагментов (сателлитная ДНК); во второй находятся умеренно повторяющиеся последовательности, рассеянные по геному; а в третьей _уникальная ДНК. В сателлитной ДНК различные копии представлены неодинаково - их численность варьируется от сотен до миллионов. Поэтому они обычно еще подразделяются на мини- и микросателлитов.

Замечательно, что распределение микросателлитов по геному столь специфично, что может использоваться в качестве аналога отпечатков пальцев для человека. Полагают также, что это распределение может быть использовано и для диагностики различных заболеваний.

В скрытом виде повторы нуклеотидных последовательностей играют важную роль и в уникальных последовательностях ДНК. Согласно гипотезе Фрэнсиса Крика, эволюция ДНК начинается от квазипериодических структур, и если мы сможем найти скрытые повторы, то узнаем, где произошли мутации, определившие эволюцию, а значит, найдем и древнейшие, и важнейшие участки, мутации в которых наиболее опасны. Распределение скрытых повторов также тесно связано со структурой и функцией белков, кодируемых соответствующей последовательностью.

В ТРИНИТИ была разработана система, в которой для поиска скрытых повторов и оценки роли мутаций в последовательностях ДНК используются модификации нейросетей Хопфилда. Есть надежда, что этот подход можно будет использовать для обобщенного спектрального анализа последовательностей данных весьма общего вида, например, для анализа электрокардиограмм.

Нейросети шагают по планете

География исследовательских групп, применяющих нейросети для разработки медицинских приложений, очень широка. О США нечего и говорить - в университете каждого штата ведутся подобные исследования, причем главное их направление - рак молочной железы. Да что там университеты - военные академии этим тоже занимаются. В Чехии Иржи Шима разработал теорию обучения нейронных сетей, способных эффективно работать с так называемыми интервальными данными (когда известны не значения параметра, а интервал его изменения), и использует их в различных медицинских приложениях. В Китае сотрудники Института атомной энергии обучили нейросеть отличать больных с легкими и тяжелыми заболеваниями эпителия пищевода от тех, кто страдает раком пищевода, на основе элементного анализа ногтей.

В России в НИИЯФ МГУ нейросети применяются для анализа заболеваний органов слуха.

Наконец, в Австралии Джордж Христос использовал теорию нейронных сетей для построения первой гипотезы о причинах загадочного синдрома внезапной смерти новорожденных.

Вместо заключения

Разумеется, в статье приведен далеко не полный перечень примеров использования технологий искусственных нейронных сетей в медицине. В стороне осталась психиатрия, травматология и другие разделы, в которых нейросети пробуются на роль помощника диагноста и клинициста. Не все, конечно, выглядит безоблачным в союзе новой компьютерной технологии и здравоохранения. Нейросетевые программы подчас крайне дороги для широкого внедрения в клинике (от тысяч до десятков тысяч долларов), а врачи довольно скептически относятся к любым компьютерным инновациям. Заключение, выданное с помощью нейронной сети, должно сопровождаться приемлемыми объяснениями или комментариями.

Но основания для оптимизма все-таки есть. Освоить и применять технологии нейронных сетей значительно проще, чем изучать математическую статистику или нечеткую логику. Для создания нейросетевой медицинской системы требуются не годы, а месяцы. Да и параметры очень обнадеживают - вспомним еще раз высокую специфичность диагностики.

И еще одна надежда на сотрудничество - само слово "нейрон". Все-таки оно так хорошо знакомо медикам...

Нейронные сети в медицине

Нейронные сети для задач диагностики

Острая боль в груди. Скорая помощь доставляет больного в приемный покой, где дежурный врач должен поставить диагноз и определить, действительно ли это инфаркт миокарда. Опыт показывает, что доля пациентов, перенесших инфаркт среди поступивших с аналогичными симптомами, невеликa. Точных методов диагностики, тем не менее, до сих пор нет. Электрокардиограмма иногда не содержит явных признаков недуга. А сколько всего параметров состояния больного могут так или иначе помочь поcтавить в данном случае правильный диагноз? Более сорока. Может ли врач в приемном покое быстро проанализировать все эти показатели вместе с взаимосвязями, чтобы принять решение о направлении больного в кардиологическое отделение? В какой-то мере эту задачу помогают решать нейросетевые технологии.

Статистика такова: врач правильно диагностирует инфаркт миокарда у 88% больных и ошибочно ставит этот диагноз в 29% случаев. Ложных тревог (гипердиагностики) чересчур много. История применения различных методов обработки данных для повышения качества диагностики насчитывает десятилетия, однако лучший из них помог сократить число случаев гипердиагностики лишь на 3%.

В 1990 году Вильям Бакст из Калифорнийского университета в Сан-Диего использовал нейронную сеть – многослойный персептрон – для распознавания инфаркта миокарда у пациентов, поступающих в приемный покой с острой болью в груди. Его целью было создание инструмента, способного помочь врачам, которые не в силах справиться с потоком данных, характеризующих состояние поступившего больного. Другой целью может быть совершенствование диагностики. Свою задачу исследователь усложнил, поскольку анализировал данные только тех пациентов, кого уже направили в кардиологическое отделение. Бакст использовал лишь 20 параметров, среди которых были возраст, пол, локализация боли, реакция на нитроглицерин, тошнота и рвота, потение, обмороки, частота дыхания, учащенность сердцебиения, предыдущие инфаркты, диабет, гипертония, вздутие шейной вены, ряд особенностей ЭКГ и наличие значительных ишемических изменений.

Сеть продемонстрировала точность 92% при обнаружении инфаркта миокарда и дала только 4% случаев сигналов ложной тревоги, ошибочно подтверждая направление пациентов без инфаркта в кардиологическое отделение. Итак, налицо факт успешного применения искусственных нейронных сетей в диагностике заболевания. Теперь необходимо пояснить, в каких параметрах оценивается качество диагноза в общем случае. Предположим, что из десяти человек, у которых инфаркт действительно есть, диагностический метод позволяет обнаружить заболевание у восьми. Тогда чувствительность метода составит 80%. Если же мы возьмем десять человек, у которых инфаркта нет, а метод диагностики заподозрит его у трех человек, то доля ложных тревог составит 30%, при этом дополнительная к нему характеристика – специфичность метода – будет равна 70%.

Идеальный метод диагностики должен иметь стопроцентные чувствительность и специфичность – во-первых, не пропускать ни одного действительно больного человека и, во-вторых, не пугать здоровых людей. Чтобы застраховаться, можно и нужно стараться прежде всего обеспечить стопроцентную чувствительность метода – нельзя пропускать заболевание. Но в это оборачивается, как правило, низкой специфичностью метода – у многих людей врачи подозревают заболевания, которыми на самом деле пациенты не страдают.

Нейронные сети для задач диагностики

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Вспомним, что нейронная сеть, диагностирующая инфаркт, работала с большим набором параметров, влияние которых на постановку диагноза человеку невозможно оценить. Тем не менее нейросети оказались способными принимать решения, основываясь на выявляемых ими скрытых закономерностях в многомерных данных. Отличительное свойство нейросетей состоит в том, что они не программируются – не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем – ведь она позволяла обнаружить сепсис в 100% случаев. Однако после более внимательного знакомства с этой экспертной системой врачи значительно усовершенствовали традиционные методы диагностики, и MYCIN потерял свое значение, превратившись в учебную систему. Экспертные системы "пошли" только в кардиологии – для анализа электрокардиограмм. Сложные правила, которые составляют главное содержание книг по клиническому анализу ЭКГ, использовались соответствующими системами для выдачи диагностического заключения.

Диагностика является частным случаем классификации событий, причем наибольшую ценность представляет классификация тех событий, которые отсутствуют в обучающем нейросеть наборе. Здесь проявляется преимущество нейросетевых технологий – они способны осуществлять такую классификацию, обобщая прежний опыт и применяя его в новых случаях.

Конкретные системы

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики – в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

В медицине находит применение и другая особенность нейросетей – их способность предсказывать временные последовательности. Уже отмечалось, что экспертные системы преуспели в анализе ЭКГ. Нейросети здесь тоже приносят пользу. Ки Чженху, Ю Хену и Виллис Томпкинс из университета штата Висконсин разработали нейросетевую систему фильтрации электрокардиограмм, позволяющую подавлять нелинейный и нестационарный шум значительно лучше, чем ранее использовавшиеся методы. Дело в том, что нейросеть хорошо предсказывала шум по его значениям в предыдущие моменты времени. А то, что нейросети очень эффективны для предсказания временных последовательностей (таких, например, как курс валют или котировки акций), убедительно продемонстрировали результаты соревнования предсказательных программ, проводимых университетом в Санта Фе – нейросети заняли первое место и доминировали среди лучших методов.

Возможности применения нейросетей

ЭКГ – это частное, хотя и исключительно важное приложение. Однако сегодня существует и много других примеров использования нейросетей для медицинских прогнозов. Известно, что длинные очереди в кардиохирургические отделения (от недель до месяцев) вызваны нехваткой реанимационных палат. Увеличить их число не удается из-за высокой стоимости реанимационной помощи (70% средств американцы тратят в последние 2 недели жизни именно в этом отделении).

Выход только в более эффективном использовании имеющихся средств. Предположим, что состояние прооперированных в некоторый день больных настолько тяжелое, что им необходимо их длительное пребывание в реанимационной палате (более двух суток). Все это время хирурги будут простаивать, поскольку вновь прооперированных больных некуда класть. Тяжелых больных разумнее оперировать перед выходными или праздниками – операционные все равно закрыты в эти дни, хирурги будут отдыхать, а больные восстанавливаться в реанимации. А вот в начале рабочей недели лучше прооперировать тех пациентов, которым нужно будет находиться в реанимационной палате только один-два дня. Тогда койки в реанимации будут освобождаться быстрее и принимать новых, прооперированных во вторник и среду больных.

Вопрос в том, как угадать, кому придется надолго задержаться в блоке интенсивной терапии после операции, а кому – нет. Джек Ту и Майкл Гуэрир из госпиталя Святого Михаила университета в Торонто использовали нейронные сети для такого предсказания. В качестве исходных данных они взяли только те сведения о пациенте, которые известны в предоперационный период. Заметим, что в предшествующих работах, не использующих нейронные сети, в качестве факторов повышенного риска пребывания в реанимации применялись также важные послеоперационные сведения – различные осложнения, возникшие в ходе хирургического вмешательства.

Ту и Гуэрир обучили двухслойный персептрон разделять больных на три группы риска, учитывая их возраст, пол, функциональное состояние левого желудочка, степень сложности предстоящей операции и наличие сопутствующих заболеваний. Из тех пациентов, которых сеть отнесла к группе малого риска задержки в реанимации, только 16,3% действительно провели в ней более двух дней. В то же время свыше 60% из тех, кого сеть отнесла в группу повышенного риска, оправдали неблагоприятный прогноз.

Борьба с раком

Мы уделяли особое внимание сердечно-сосудистым заболеваниям, поскольку именно они удерживают печальное лидерство в списке причин смертности. На втором месте находятся онкологические заболевания. Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, – диагностика рака молочной железы. Этот недуг – причина смерти каждой девятой женщины.

Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть! В клинике Майо (Миннесота) нейросеть анализировала результаты ультразвукового исследования молочной железы и обеспечила специфичность 40%, в то время как для тех же женщин специфичность заключения радиологов оказалась нулевой. Не правда ли, успех использования нейросетевых технологий выглядит совсем не случайным?

После лечения рака молочной железы возможны рецидивы возникновения опухоли. Нейросети уже помогают эффективно их предсказывать. Подобные исследования проводятся на медицинском факультете Техасского университета. Обученные сети показали свои способности выявлять и учитывать очень сложные связи прогностических переменных, в частности, их тройные связи для улучшения предсказательной способности.

Разнообразны возможности применения нейросетей в медицине, и разнообразна их архитектура. На основе прогноза отдаленных результатов лечения заболевания тем или иным методом можно предпочесть один из них. Значительного результата в прогнозе лечения рака яичника (болезнь каждой семидесятой женщины) добился известный голландский специалист Герберт Каппен из университета в Нимегене (он использует в своей работе не многослойные персептроны, а так называемые Машины Больцмана – нейросети для оценки вероятностей).

А вот пример другого онкологического заболевания. Исследователи из медицинской школы в Кагаве (Япония) обучили нейросеть, которая практически безошибочно прогнозировала по предоперационным данным результаты резекции печени у больных печеночно-клеточной карциномой.

В Троицком институте инновационных и термоядерных исследований (ТРИНИТИ) в рамках реализуемого Министерством науки проекта создания нейросетевых консультационных систем была разработана нейросетевая программа, которая выбирает метод лечения базальноклеточного рака кожи (базалиомы) на основе долгосрочного прогноза развития рецидива. Число заболеваний базалиомой – онкологическим недугом белокожих людей с тонкой кожей – составляет треть всех онкологических заболеваний.

Диагностика одной из форм меланомы – опухоли, которую иногда непросто отличить от пигментной формы базалиомы, была реализована с помощью нейросетевого симулятора Multineuron, разработанного в ВЦ СОАН в Красноярске под руководством А.Н.Горбаня.

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Специалисты Института рака разбили известные онкологические препараты на шесть групп в соответствии с механизмом их действия на раковые клетки и обучили многослойные сети классифицировать новые вещества и распознавать их действие. В качестве исходных данных использовались результаты экспериментов по подавлению роста клеток из различных опухолей. Нейросетевая классификация позволяет определить, какие из сотен ежедневно апробируемых молекул стоит изучать далее в весьма дорогих экспериментах in vitro и in vivo. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Нейросистемы, генетика и молекулы

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов – участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

В 1996 году было сделано сенсационное открытие, связавшее фундаментальные исследования в молекулярной генетике с проблемой патогенеза и лечения самого распространенного онкологического заболевания – базальноклеточного рака кожи. Исследователи обнаружили в девятой хромосоме человека ген (PTC), мутации в котором, в отличие от гена p53, вызваны воздействием ультрафиолета и являются причиной развития опухоли. Ключом к открытию стало изучение так называемого заплаточного гена, изменения в котором стимулировали дефекты развития плодовой мушки и тот факт, что у детей, также страдающих дефектами развития костной ткани (базальный невусный синдром), часто имеются множественные базалиомы.

Теперь генетики и врачи преисполнены надежд найти медикаментозное средство лечения базалиомы или использовать методы генной хирургии, и заменить ими такие нещадящие методы лечения, как обычная лазерная, рентгеновская и криохирургия. Могут ли нейронные сети оказаться полезными для этих исследований? В частности, нельзя ли с их помощью оценить возможное влияние определенной мутации на изменение свойств соответствующих белков или оценить ее прогностическое значение, скажем, для развития рецидива рака молочной железы?

Если бы это можно было сделать, то нейросети значительно уменьшили бы область поиска для молекулярных биологов, часто "на ощупь" проводящих очень дорогостоящие эксперименты по оценке роли мутаций в молекуле ДНК. Напомним, что к развитию злокачественных опухолей приводит неконтролируемый рост и деление клеток. Геном человека, в котором записана информация о всех производимых в организме белках, насчитывает около трех миллиардов нуклеотидов. Но только 2-3% из них действительно кодируют белки – остальные нужны самой ДНК для поддержания правильной структуры, репликации и прочего.

В геномных последовательностях ДНК можно приближенно выделить три составляющие: в первой содержатся многочисленные копии одинаковых фрагментов (сателлитная ДНК); во второй находятся умеренно повторяющиеся последовательности, рассеянные по геному; а в третьей _уникальная ДНК. В сателлитной ДНК различные копии представлены неодинаково – их численность варьируется от сотен до миллионов. Поэтому они обычно еще подразделяются на мини- и микросателлитов.

Замечательно, что распределение микросателлитов по геному столь специфично, что может использоваться в качестве аналога отпечатков пальцев для человека. Полагают также, что это распределение может быть использовано и для диагностики различных заболеваний.

В скрытом виде повторы нуклеотидных последовательностей играют важную роль и в уникальных последовательностях ДНК. Согласно гипотезе Фрэнсиса Крика, эволюция ДНК начинается от квазипериодических структур, и если мы сможем найти скрытые повторы, то узнаем, где произошли мутации, определившие эволюцию, а значит, найдем и древнейшие, и важнейшие участки, мутации в которых наиболее опасны. Распределение скрытых повторов также тесно связано со структурой и функцией белков, кодируемых соответствующей последовательностью.

В ТРИНИТИ была разработана система, в которой для поиска скрытых повторов и оценки роли мутаций в последовательностях ДНК используются модификации нейросетей Хопфилда. Есть надежда, что этот подход можно будет использовать для обобщенного спектрального анализа последовательностей данных весьма общего вида, например, для анализа электрокардиограмм.

Нейросети шагают по планете

География исследовательских групп, применяющих нейросети для разработки медицинских приложений, очень широка. О США нечего и говорить – в университете каждого штата ведутся подобные исследования, причем главное их направление – рак молочной железы. Да что там университеты – военные академии этим тоже занимаются. В Чехии Иржи Шима разработал теорию обучения нейронных сетей, способных эффективно работать с так называемыми интервальными данными (когда известны не значения параметра, а интервал его изменения), и использует их в различных медицинских приложениях. В Китае сотрудники Института атомной энергии обучили нейросеть отличать больных с легкими и тяжелыми заболеваниями эпителия пищевода от тех, кто страдает раком пищевода, на основе элементного анализа ногтей.

В России в НИИЯФ МГУ нейросети применяются для анализа заболеваний органов слуха.

Наконец, в Австралии Джордж Христос использовал теорию нейронных сетей для построения первой гипотезы о причинах загадочного синдрома внезапной смерти новорожденных.

Вместо заключения

Разумеется, в статье приведен далеко не полный перечень примеров использования технологий искусственных нейронных сетей в медицине. В стороне осталась психиатрия, травматология и другие разделы, в которых нейросети пробуются на роль помощника диагноста и клинициста. Не все, конечно, выглядит безоблачным в союзе новой компьютерной технологии и здравоохранения. Нейросетевые программы подчас крайне дороги для широкого внедрения в клинике (от тысяч до десятков тысяч долларов), а врачи довольно скептически относятся к любым компьютерным инновациям. Заключение, выданное с помощью нейронной сети, должно сопровождаться приемлемыми объяснениями или комментариями.

Но основания для оптимизма все-таки есть. Освоить и применять технологии нейронных сетей значительно проще, чем изучать математическую статистику или нечеткую логику. Для создания нейросетевой медицинской системы требуются не годы, а месяцы. Да и параметры очень обнадеживают – вспомним еще раз высокую специфичность диагностики.

И еще одна надежда на сотрудничество – само слово "нейрон". Все-таки оно так хорошо знакомо медикам…

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО РАЗМЕРА НЕЙРОСЕТИ ОБРАТНОГО

РАСПРОСТРАНЕНИЯ ЧЕРЕЗ СОПОСТАВЛЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ

МОДУЛЕЙ ВЕСОВ СИНАПСОВ

Предлагается новая "кривая обучения" . график зависимости среднего модуля веса

синапса от размера нейросети. Эксперименты показывают, что локальные минимумы и

выходы на асимптоты данного индикатора хорошо соответствуют свойствам

традиционных кривых обучения. зависимостей ошибок обучения и обобщения от

размера нейросети. Индикатор может быть использован для определения оптимального

размера сети при отсутствии тестовой выборки.

1. Задача определения оптимальной структуры нейросети

При использовании искусственных нейронных сетей важной задачей является

нахождение оптимального размера (структуры) сети. такого числа скрытых слоев

нейронов и нейронов в слоях, которые дадут максимум обобщающих способностей, т.е.

минимум ошибки обобщения (generalization error), особенно в случае отсутствия

независимой тестовой выборки или невозможностью искусственно разделить выборку

данных на обучающую и тестовую части из-за недостаточности общего объема данных.

Поэтому широко используется парадигма "кривых обучения" (learning curves) .

зависимостей ошибок обучения и обобщения от размеров нейросети и обучающей

выборки . Оптимуму соответствуют локальные минимумы или моменты выхода

графиков на асимптоты. Формальные приемы экстраполяции таких графиков

позволяют также оценивать необходимые и достаточные для достижения максимума

обобщающих способностей объемы обучающих выборок в случае первоначальной

недостаточности объемов выборочных данных.

Иным классом кривых обучения являются зависимости "внутренних" свойств

нейросети от её размера, сопоставляемые затем с динамикой ошибки обобщения.

Варианты. анализ внутреннего представления (internal representation) задачи,

теоретическая связь ошибки обучения и максимума суммы модулей весов синапсов,

приходящих на нейрон сети, NIC-критерий , оперирующий с градиентами целевой

функции и матрицей Гессе обученной сети и позволяющий оценить разницу между

ошибками обучения и обобщения. Такие критерии позволяют обходиться без

независимой тестовой выборки.

В работе предлагается новый вариант кривой обучения. зависимость среднего

модуля веса синапса от размера нейросети. Точнее, в экспериментах далее будет

использовано значение длины вектора весов синапсов сети (вычисленного в

евклидовой норме), деленное на общее число синапсов, с целью увеличения влияния

наибольших по модулю весов и следующей из этого перестраховке исходя из

результатов о нежелательности именно больших весов синапсов.

Этот критерий не является всеобъемлющим, т.к. имеется неоднородность

наборов синапсов сети от слоя к слою (для сетей малого размера в часто наблюдалось

статистическое различие средних модулей и дисперсий весов синапсов выходного и

скрытого слоя сети). Структурная неоднородность слоистых сетей известна и уже__учитывается алгоритмами обучения , но здесь влияние этого факта не исследуется.

2. Данные для экспериментальной проверки и результаты

Было взято 6 баз реальных данных, имеющих независимые тестовые выборки

(чтобы не вносить погрешность в оценку ошибки обобщения способом разбиения

обучающей выборки на обучающую и тестовую части). Взяты базы данных

AnnThyroid, Opt digits, Pen digits, Satellite, Statlog shuttle из UCI KDD Database

Repository http://kdd.ics.uci.edu/, и база данных Gong , доступная на страничке

http://www-ee.uta.edu/eeweb/IP/training_data_files.htm. Все 6 задач представляют собой

задачи классификации с учителем на то или иное число классов.

Все эти задачи обладают значительным, от нескольких тысяч до нескольких

десятков тысяч векторов, размером обучющей выборки. данное условие нужно для

гарантирования представительности выборки (и, соответственно, наличия четкой

асимптотики в ошибках обучения и обобщения после достижения и превышения

нейронной сетью адекватного для задачи размера) и отсутствия возникновения эффекта

переобучения при дальнейшем росте размера нейросети (шум и искажения в

обучающей выборке, если таковые наличествуют, не смогут быть запомнены

нейросетью из-за значительного, при большом объеме выборки, числа таких

искажений, а не единичности случаев этих искажений).

Использовались сети с одним скрытым слоем, число нейронов в котором

менялось от 1 до 25. В каждой задаче для каждого размера нейросети обучалось по 25

сетей (с разными начальными случайными значениями синапсов), свойства которых

затем усреднялись при построении кривых обучения.

Средние значения ошибок обучения и обобщения (выраженные в процентах доли

неправильно решенных примеров в объеме соответствующей выборки);

Среднеквадратичный вес синапса в сети. предлагаемый индикатор;

Максимум среди понейронных сумм модулей весов синапсов. индикатор .

Вдоль осей ординат отложено число нейронов в скрытых слоях сетей. Значения

индикаторов, отражающих свойства весов синапсов, перемасштабированы для

приведения в диапазон значений величин ошибок обучения и обобщения, что было

вызвано ограничениями программы построения графиков (невозможностью ввода двух

шкал). Вокруг каждой точки отложена дисперсия соответствующей выборки из 25

экспериментальных значений.

Видно, что выход нового индикатора на асимптоту (и стабилизация. такое

снижение дисперсии, что "усы" вокруг точки закрываются самой точкой) немножко

отстает от выхода ошибок обучения и обобщения на асимптоты, т.е. немножко

перестраховывается в плане требуемого размера сети, что можно только

приветствовать исходя из теоретических результатов : увеличение числа путей

прохождения сигнала по сети может снизить максимальные веса синапсов за счет

размножения каналов, где ранее требовалось усиление.

Также индикатор выявляет выход ошибки обобщения на оптимум во всех двух

случаях возникновения переобучения (задачи AnnThyroid, Gong), когда с ростом

размера сети с некоторого момента ошибка обобщения начинает снова возрастать.

момент стабилизации и выход индикатора на асимптоту чуть запаздывает по

сравнению с моментом достижения минимума ошибки в задаче AnnThyroid, а в задаче

Gong локальный минимум при размере сети в 6 нейронов точно соответствует

минимуму ошибки обобщения. Индикатор же в задаче Gong не имеет четко

выраженного экстремального поведения существенно нестабилен на всем диапазоне

исследованных размеров нейросети. от 1 до 25 нейронов.__

Локальные минимумы индикатора (шесть нейронов для задачи Gong, три для

задачи Opt digits, два для задачи Satellite) также могут указывать на оптимум ошибки

обобщения (задача Gong) или на структурные уровни сложности задачи (последнее

совпадает с изломами графиков ошибок обучения и обобщения). Последнее может

позволять идентифицировать моменты перехода от области адекватности

малопараметрических моделей классической статистики (линейная регрессия,

линейный дискриминант или байесовский классификатор на основе оценок

ковариационных матриц для каждого класса) к областям адекватности

многопараметрических моделей (нейронные сети, полиномиальные аппроксимации)

или непараметрических методов (непараметрическая статистика на основе ядерных

аппроксимаций плотностей вероятности, метод потенциальных функций).

Также индикатор чуть быстрее снижает свою дисперсию по набору проб, чем

максимальная понейронная сумма модулей весов синапсов , что в реальной работе

позволит обойтись меньшим числом попыток обучения для каждого размера

нейросети, или даже вообще без необходимости статистического усреднения свойств

нескольких нейросетей одного размера для получения четкой картины на графиках

наподобие приведенных в данной работе.

Как видно из экспериментальных графиков, при выборе оптимального размера

сети опираться только на значение ошибки обучения недостаточно. нельзя выявить

возникновение переобучения нейросети, поэтому сопоставление поведения нескольких

индикаторов (как было сделано на приведенных графиках) позволяет либо более

обоснованно подтвердить выбор размера нейросети, либо увидеть возможное

существование проблем (например, неадекватности модели из-за возникновения

переобучения). Возможность же обойтись без проверки на тестовой выборке позволяет

обучать нейросеть на всем доступном наборе примеров, без разделения его на

обучающий и тестовый фрагменты, и ожидать, что с ростом числа обучающих

примеров снизится и риск переобучения нейросети .

3. Заключение

Предложен новый вариант кривой обучения. зависимость яыјяj__среднего значения

модуля веса синапса в сети от размера нейросети. Экспериментально показано, что с

его помощью возможно достаточно надежное определение оптимального размера сети,

обеспечивающего минимум ошибки обобщения. Индикатор позволяет обходиться без

расчета ошибки обобщения на независимой тестовой выборке, допускает вариации

путем выбора нормы (модуль веса, среднее квадратичное значение,.) и учета

структурной неоднородности сети для максимизации прогностических способностей.

Также данный критерий может быть применен и при обучении растущих

нейросетей, наподобие нейросетей каскадной корреляции, причем как на этапе отбора

обученного нейрона-кандидата для вставки в нейросеть (наряду с использованием

значения целевой функции для этого нейрона), так и после вставки отобранного

нейрона в сеть и коррекции последней (не единственный отобранный нейрон-кандидат

вставляется в нейросеть, а несколько лучших возможных нейронов вставляются

каждый в свою копию нейросети, и уже эти доученные копии сравниваются между

собой как по значению целевой функции, так и по предлагаемому индикатору).