Главная · Изжога и отрыжка · Генетические рекомбинации. Трансдукция. Трансформация. Конъюгация. Генетические рекомбинации (трансдукция, конъюгация, трансформация), их механизм и значение в изменчивости Особенности построения генетических карт у прокариот

Генетические рекомбинации. Трансдукция. Трансформация. Конъюгация. Генетические рекомбинации (трансдукция, конъюгация, трансформация), их механизм и значение в изменчивости Особенности построения генетических карт у прокариот

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.

Наименование параметра Значение
Тема статьи: Рекомбинация у бактерий: трансформация, трансдукция, конъюгация.
Рубрика (тематическая категория) Культура

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот :

‣‣‣ у бактерий имеется несколько механизмов рекомбинаций;

‣‣‣ при рекомбинациях у бактерий образуется не зигота͵ как у эу­кариот, а мерозигота (несет полностью генетическую инфор­мацию реципиента и часть генетической информации донора в виде дополнения);

‣‣‣ у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Трансформация - это обмен генетической информацией у бакте­рий путем введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредст­венно выделœенного из клетки-до нора). Чаще всœего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клетка-реципиент должна находиться в определœенном физиологиче­ском состоянии (компетентности), ĸᴏᴛᴏᴩᴏᴇ достигается специ­альными методами обработки бактериальной популяции.

При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Трансдукция - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов.

Трансдуцирующие фаги могут переносить 1 или более генов (признаков).

Трансдукиия бывает :

‣‣‣ специфической - переносится всœегда один и тот же ген;

‣‣‣ неспецифической - передаются разные гены.

Это связано с локализацией трансдуиируюших фагов в геноме до­нора :

‣‣‣ в случае специфической трансдукции они располагаются всœе­гда в одном месте хромосомы;

‣‣‣ при неспецифической их локализация непостоянна.

Конъюгация - обмен генетической информацией у бактерий пу­тем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть до­норской ДНК должна быть передана реципиенту.

Основываясь на прерывании конъюгации через определœенные промежутки времени, можно определить порядок расположе­ния генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий).

Донорской функцией обладают F + -клетки.

Рекомбинация у бактерий: трансформация, трансдукция, конъюгация. - понятие и виды. Классификация и особенности категории "Рекомбинация у бактерий: трансформация, трансдукция, конъюгация." 2017, 2018.

Тема: Генетика микроорганизмов 1. Конъюгация, трансдукция, трансформация. 2. Изменчивость микроорганизмов. 3. Использование достижений генетики бактерий.

Наследственный аппарат бактерий имеет ряд особенностей: бактерии - гаплоидные организмы, т. е. они имеют 1 хромосому. В связи с этим при наследовании признаков отсутствует явление доминантности; бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации. Наследственный аппарат бактерий представлен хромосомой. У бактерий она одна. Хромосома бактерий - это молекула ДНК. Длина этой молекулы достигает 1, 0 мм и, чтобы "уместиться" в бактериальной клетке, она не линейная, как у эукариотов, а суперспирализована в петли и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены. У кишечной палочки, например, их более 2 тыс.

2. Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности; транспозоны; плазмиды. IS-последовательности (англ. insertion - вставка, sequence - последовательность)- короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). ISпоследовательности одинаковы у разных видов бактерий. Транспозоны - это молекулы ДНК, более крупные, чем IS последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Транспозоны (Tn-элементы) состоят из 2000 -25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых ISэлемента. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. В общем, для транспозонов характерны те же гены, что и для плазмид (гены устойчивости к антибиотикам, токсинообразования, дополнительных ферментов метаболизма). Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы,

Плазмиды - кольцевые суперспиралевидные молекулы ДНК. Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены, наделяющие бактериальную клетку разными, весьма важными для нее свойствами: R-плазмиды - лекарственной устойчивостью; Col-плазмиды - способностью синтезировать колицины; F-плазмиды - передавать генетическую информацию; Тох-плазмиды - синтезировать токсин; Плазмиды биодеградации - разрушать тот или иной субстрат и т. д. Плазмиды могут быть интегрированы в хромосому (в отличие от ISпоследовательностей и транспозонов, встраиваются в строго определенные участки), а могут существовать автономно. В этом случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды. Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными.

У бактерий различают 2 вида изменчивости - фенотипическую и генотипическую. Фенотипическая изменчивость - модификация - не затрагивает генотип, но затрагивает большинство особей популяции. Модификации не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковре менные модификации) исло поколений. ч Генотипическая изменчивость затрагивает генотип. В ее основе лежат мутации и рекомбинации. Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностью мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутации могут быть: спонтанными; индуцированными. По протяженности: точечными; генными; хромосомными. По направленности: прямыми; - обратными.

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот: у бактерий имеется несколько механизмов рекомбинаций; при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения); у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Конъюгация У бактерий - способ переноса генетического материала от одной бактериальной клетки к другой. При этом две бактерии соединяются тонким мостиком, через который из одной клетки (донора) в другую (реципиент) переходит отрезок нити дезоксирибонуклеиновой кислоты (ДНК). Наследственные свойства реципиента изменяются в соответствии с количеством генетической информации, заключённой в переданном кусочке ДНК.

Конъюгация Конъюгация (от лат. conjugatio - соединение), парасексуальный процесс - однонаправленный перенос части генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Дж. Ледербергом и Э. Тайтемом. Имеет большое значение в природе, поскольку способствует обмену полезными признаками при отсутствии истинного полового процесса. Из всех процессов горизонтального переноса генов конъюгация позволяет передавать наибольшее количество генетической информации.

Конъюгация - обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий). Донорской функцией обладают F+-клетки.

Трансдукция Эстер Ледерберг удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K 12 в 1950 году. Собственно открытие трансдукции связано с именем Джошуа Ледерберга. В 1952 году они совместно с Нортоном Циндером обнаружили общую трансдукцию. В 1953 Ледербергом и др. было показано существование абортивной трансдукции, в 1956 - специфической.

Трансдукция- обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов. Трансдуцирующие фаги могут переносить 1 или более генов (признаков). Трансдукиия бывает: специфической - переносится всегда один и тот же ген; неспецифической - передаются разные гены. Это связано с локализацией трансдуиируюших фагов в геноме донора: в случае специфической трансдукции они располагаются всегда в одном месте хромосомы; при неспецифической их локализация непостоянна.

Рис. 2. Трансдукция 1 - бактерия - донор (В+), 2 - фаг, 3 - размножение, 4 - адсорбция, 5 - бактерия - реципиент (В-), 6 - бактерия – реципиент с новым свойством.

Трансформация - это обмен генетической информацией у бактерий путем введения в бактериальную клетку реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-донора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клеткареципиент должна находиться в определенном физиологическом состоянии (компетентности), которое достигается специальными методами обработки бактериальной популяции или возникает спонтанно. При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Рис. 3. Трансформация капсульный штамм бактерии (1) при посеве дает рост (6). После кипячения этой культуры рост отсутствует (7). Аналогичен результат такого опыта с бескапсульным штаммом (4 -рост +, 8 -рост -). Объединение в одну емкость экстракта касульного (1) и живой культуры бескапсульного (3) штаммов с последующим высевом дает рост капсульного штамма (5).

Свойства клеток колоний S – и R- форм S-форма R-форма Колонии шероховатые, непрозрачные с неровными краями, часто морщинистые Жгутики часто отсутствуют Капсулы или слизистый слой отсутствует Биохимически менее активны Слабовирулентные или авирулентные Неполноценны в антигенном отношении Слабочувствительны к фагу Взвесь быстро оседает, осадок крошковидный, клетки полиморфные Колонии прозрачные, с гладкой блестящей поверхностью, круглые, с ровными краями, выпуклые Подвижные виды имеют жгутики У капсульных видов хорошо видна капсула или слизистый слой Биохимически более активны У патогенных видов выражены вирулентные свойства Полноценны в антигенном отношении Чувствительны к фагу Взвесь клеток в физиологическом растворе гомогенная, стойкая, клетки нормальных размеров

Трансформация - изменение наследственных свойств клетки в результате проникновения или искусственного привнесения в нее чужеродной ДНК. Природу трансформирующего фактора установили Эвери, Мак-Леод в 1944. Трансформировать удается только те бактерии, в клетки которых может проникнуть высокомолекулярная, двуХцепочечная (интактная) ДНК. Способность поглощать ДНК – компетенция, и зависит от физиологического состояния клетки. ДНК может поглощаться в определенную короткую фазу изменения клеточной поверхности. С помощью ДНК могут передаваться такие признаки как: капсулообразование, синтез в-в, ферментативная активность, устойчивость к ядам, антибиотикам.. Любая ДНК может проникнуть в компетентную клетку, но рекомбинация роисходит только ДНК родственного вида. Конъюгация - перенос генетического материала путем прямого контакта между 2 клетками. Исследовали Ледерберг и Татум в 1946 на мутантах Кишечной палочки. Один мутант уждался в аминокислотах А и В, но был способен синтезировать Си Д, второй был ему компетентен (А-В-С+Д+). Эти мутанты не росли и не образовывали колоний на минимальной, питательной среде, но если внести на нее суспензию обоих мутантов, то колонии появлялись. Клетки этих колоний обладали наследственной способностью синтезировать все аминокислоты (А+В+С+Д+).Здесь предпосылкой рекомбинации служит конъюгация. При исследовании бактерий выяснили, что способность клетки быть донором связана с наличием фактора F (F +клетки, не содержащие фактора – F- и может функционировать, как реципиент) – плазмида, кольцевая, двухцепочечная молекула ДНК. Т.о. клетки реципиенты в результате конъюгации становятся донорами, а хромосомные признаки не передаются. F-плазмида обуславливает образование на клетке половых фимбрий/ F-пили, которые служат для узнавания при контакте м/у клеткой донором и клеткой реципиентом и делают возможным образование мостика, по которому ДНК переходит в клетку. Конъюгация распространена у энтеробактерий, прокариот. Трансдукция - пассивный перенос бактериальных генов из одной клетки в другую частицами бактериофага, что приводит к изменению наследственных свойств клетки. Различают 2 вида трансдукции: а) Неспецифический - при котором может быть перенесен любой фрагмент ДНК хозяина (ДНК клетки хозяина включается в частицу фага/ к его собственному гену/ вместо него) ; б) Специфический – может быть перенесен строго определенный фрагмент ДНК некоторые гены фага заменяются генами хозяина). В обоих случаях фаги дефектны, т.е. теряют способность лизировать клетку.

38. Факторы резистентности(r-факторы). Свойства плазмидов. Транспозоны.

1. Резистентность – устойч.орг-мов к каким-либо антигенам. Бактерии устойч.к некотор.антаибиотикам были откр. В 50-е годы в Японии(возбудители дезинтерии. Отмеч.множ.уст-ть бакт.дезинтерии и это может перед.др.бакт. R-факторы содержат гены, которые делают клетку устойчивой к некоторым антибиотикам. Некоторые R-факторы обуславливают резистентность сразу к 8 антибиотикам, а др. R-ф. придают уст-ть к тяж.мет.(ртуть, никель, кадмий) R-плазмида несёт 2 гр.генов:1)ген отв.за передачу плазмиды путём коньюгации(гены tra) и они обр.так назыв.»факторы переноса устойчивости(RTF), 2)гены котор.обусл.собственно резист-ть и они сост. Сост.лишь небольш.часть плазмиды.

RTF включ.все гены,ответств.за перенос фактора R из клетки в клетку, котор.осущ.путём коньюгации. Т.е фактор R также как и фактор F- инфекционен. Возможен перенос R-фактора между несколькими разными родами бактерий, что способств.их дальнейшему распр. Фермитативн.хим.модиф.антибиотиков явл.осн.причиной уст.к ним,обусл.плазмидами. Например канамицин и неомицин подверг.фосфорелиров-ю, а пинпиц.инактивиро.пеницилиназой. поск. При налич. R-факторов возможна генетт.рекомбинация, то может.возн.нов.сочет-е генов,котор.придадут.дополн.св-ва уст-ти. R-факторы имеют больш.знач-е для химио-терапии.

2. Бактериоцины . Многие бакт.синтез.белки,Юкотор. Убив.родств.виды или штаммы или тормозят их рост. Эти белки назыв-ся бактериоцинами. Они кодир. Особ.плазмидами, котор.назыв.бактериоциногенными факторами. Бактериоцины были выделены из эшрихиа коли(колицины) и др.бакт. Назв-е бактериоцинам даётся по продуцир.форме бакт.,напр.стафилококи произв.стафилоцины. неорг.в-ва, убив.бакт.назыв.антисептиками.

3. Др.призн., опр.плазмидами. Плазмиды могут содерж.гены,котор.обусл.ряд специф.биол.св-в,котор.в опр.усл-ях созд.селективное преимущество. Гены ферментов,необх.для расщепл-я камыфоры,салиц.к-ты и др.необ.субстратов могут наход.в плазмидах. Перечень св-в, наслед.с плазмидами, значит-й и включает: азотфиксацию,обр-е клубеньков, погл-е сахаров, синтез гидрогеназы и др. Некотор.из этих св-в могут опр.генами бактер. Хромасомы (обмен генами м-ду хромосомой и плазмидой). Плазмиды сыграли важн.роль в эвол.прокариотов.

4. Несовместимость. Многие бакт.содерж.плазмиды разл.велич. Сосущ.разн.плазмидов в одной клетке говорит о том, что такие плазмиды совместимы между собой. Но 2 родств.плазмиды не могут сосущ.в одной клетке,они несовместимы. Все плазмиды подр.на гр.несов-ти: плазмиды,отн.к одной и тойже группе несовм.

Транспозоны – это послед-ти ДНК,котор.способны встр.во мног.уч-ки генома и могут «перепр.»с плазмиды на бакт.хромосому,на др.плазмиду. Транспазоны содержат гены,котор.опр.внешнерасп.признаки,а именно уст-ть к таким антибиотикам как пиниц.,тетрациклин и др. В с вязи с этим их легче обнар., чем IS – Эл-ты (чужеродн.ДНК,предст.собой инсерцион.посл-ти встреч в бакт.хромосомах и плазмидах.). По обе стороны от генов уст-ти, котор.нах.внутри транспозона распол 2 одинаков посл-ти,котор.могут идти в одном и томже или противопол.напр-ях. Эти повт.посл-ти оснований ДНК частично идентичны с IS – Эл-тами.

41. Эволюция м/оов.

Кл-ки всего живого от примитивных форм до высоко организованных состоят из одних и тех же структурных элементов и исп одни и теже механизмы для получения энергии и роста. В этом заключается биохимическое единство всех живых организмов. В процессе эволюции происходило становление и формирование различных форм живого. Для процесса эволюции жизни необходимо предст какие условия были на Земле, в кот оказалось возможным самозарождение жизни. В послед после формирования Земли период на ней происх активные биологич процессы, кот меняли ее облик и приводили к формированию земной коры, гидросферы и атмосферы. Когда органич в-ва на Земле накопились в большом количестве=>возникли условия, при котором мог совершиться переход от химич эволюции к возникновению первых самовоспроизводящихся живых существ. Для клет жизни характерно, что она всегда предст в виде опред структур, кот пространственно обособленны от внешней среды, но постоянно взаимод с ней по типу отк систем. Предполаг, что след этапом эволюции на пути возникн жизни было формирование определенной структурной организации – абиогенносинтезированных органических соединений. Они имели сферическую форму, диаметр 0,5-7мкм, напоминали кокковидные формы бактерий, содержали протеиноиды, кот обладали определенной стабильностью. При окрашивании по грамму было обнаружено, что микросферы, образованные из кислых протеиноидов - гр-, а основными протеиноидами – гр+. Этот этап переходный этап от химической к биологической эволюции и возникшая закономерность может быть определена как предбиологический естественный отбор. В дальнейшем предпол, что первыми прокариотами, кот могли появиться в водоемах, где было много органич в-ва были организмы, кот сущ за счет брожения и обладавшими основными функциями анаэробного обмена. Если предположить, что в водоемах имелись тогда и сульфаты, то след этапом эволюц явл эффективный транспорт электронов с созданием протонного потенциала как источника энергии для регенерации АТФ. Кроме того, было экспериментально показано, что на начальн этапе эволюц прокариоты могли воспроизводиться и передавать информацию потомству без участия нуклеиновых кислот. Для дальнейшей эволюции прокариот было необходимо создание специального аппарата, кот бы обеспечивал точное воспр полипептидов. Это привело к формированию нового механизма синтеза – матричного синтеза, в основе которого лежит использование свойств полинуклеотидов. Свойством полинуклеиновых молекул является способность к точному воспроизведению, основанное на принципе структурной комплиментарности.

Главное событие в эволюции: переход от первичной восстанавливающей атмосферы к атмосфере, содержащей кислород. У бактерий появился новый тип метаболизма – аэробное дыхание, что стало возможно в результате превр цитохромов в терминальные оксидазы, используя молекулы О 2 в качестве акцептора электронов. Предполагают, что 2 млрд лет назад уже сущ все фототрофные прокариоты, кот изв и сейчас. Прокариоты первично занимали много различ экологич ниш, кот затем постепенно уступили эукариотам. Выработка разнообразных типов метаболизма у прокариот была обусловлена простой структурной клеткой, высокоразвитой системой регуляции, быстрым ростом, наличием неск механизмов переноса генов.

42.ПАТОГЕН МИКРООРГ И ИММУНИТЕТ.

Иммунитет защищает нас от инфекционных агентов: бактерий, вирусов и простейших, т. е. защищает организм от всего чужеродного.

Инфекция – сложный биологический процесс, возникающий в результате проникновения патогенных микробов в организм и нарушения постоянства его внутренней среды.

Патогенность – это способность микроба определенного вида при соответствующих условиях вызывать характерное для него инфекционное заболевание. Следовательно, патогенность есть видовой признак.

В природной среде встречаются биологические загрязнители, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы, гельминты, простейшие. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке.

Наиболее опасны возбудители инфекционных заболеваний. Они имеют различную устойчивость в окружающей среде. Одни способны жить вне организма человека всего несколько часов; находясь в воздухе, в воде, на разных предметах, они быстро погибают. Другие могут жить в окружающей среде от нескольких дней до нескольких лет. Для третьих окружающая среда является естественным местом обитания. Для четвертых - другие организмы, например дикие животные, являются местом сохранения и размножения.

Часто источником инфекции является почва, в которой постоянно обитают возбудители столбняка, ботулизма, газовой гангрены, некоторых грибковых заболеваний. В организм человека они могут попасть при повреждении кожных покровов, с немытыми продуктами питания, при нарушении правил гигиены.

Типичные антибиотики

Продуценты

На кого действует

Механизм действии

Трудности терапевтического применения

Пенициллины, це-фалоспорины

Грибы родов Ре nicillium , Cephalosporum

Грамположитель-ные и грамотрицательные бактерии

Нарушение синте­за клеточной стенки

Аллергические реакции

Стрептомицин, гентамицин, канамицин, тобрамицин, амикацин

Актиномицеты ро­да Streptomyces , бактерии родов Micromonospora . Bacil ­ lus

Необратимое подавление синтеза белка

Токсическое дейст­вие на слуховой нерв и почки

Одноименные антибиотики

Актиномицеты ро­да Streptomyces

Грамположительные и грамотрицательные бактерии, риккетсии, хламидии, простейшие

Обратимое подав­ление синтеза белка

Распространение устойчивых штаммов

Антибактериаль­ные: эритромицин Противогрибковые и антипротозойные: полиены

Актиномицеты ро­да Streptomyces То же

Грамположительные бактерии Грибы, некоторые простейшие

Нарушение плаз­матической мемб­раны

Токсичность

Полимиксины, грамицидины, бацитрацины

Различные микро-организмы

В основном грамотрицательные бак­терии

Механизм дейст­вия различен

Высокая токсичность

Комбинативные изменения.

Появляются в результате трансформации и конъюгации. Трансформация - это процесс переноса участка генетического материала ДНК, содержащего одну пару нуклеотидов, отклетки-донорак клеткерецептору.

Впроцессе трансформации различают 5 стадий:

1)Адсорбция трансформирующей ДНК на поверхности микробной клетки;

2)Проникновение ДНК в клетку-реципиент;

3)Спаривание внедрившейся ДНК с хромосомными структурами клетки;

4)Включение участка ДНК клетки-донорав хромосомные структурыклетки-реципиента;

5)Дальнейшее изменение нуклеотида в ходе последующих делений. Оптимальная температура трансформации 29-32ͦС.

Трансдукция- это изменение, при котором генетический материал отклетки-доноракклетке-реципиентупереносит трансдуцирующий (умеренный) фаг, т.е. фаг, не вызывающий ее разрушения.

Различают три типа трансдукции:

1)Общая (неспецифическая), может происходить перенос различных или нескольких признаков одновременно.

2)Специфическая, характеризуется переносом только определѐнного признака.

3)Абортивная, участок ДНК клетки-донора,перенесенный фагом вклетку-реципиента,не включается в ее геном.

Конъюгация - форма полового процесса, при котором происходит соединение мужской и женской микробных клеток и обмен между ними ядерным веществом.

При этом генетический материал клетки-донорапереходит в клеткуреципиент. После рекомбинации и деления клетки образуются формы с признаками конъюгирующих клеток.

Таким образом, все три формы комбинативной изменчивости (трансформация, трансдукция, конъюгация) различны по форме, но одинаковы по существу. При трансформации участок ДНК клетки-доноравходит вклетку-реципиент,при трансдукции эту роль выполняет фаг, а при конъюгации перенос генетической информации осуществляется через цитоплазматический мостик (пили).

Риккетсии

Грамотрицательные микробы. По формекороткие палочки или кокки. Риккетсии имеют клеточную стенку, которая сходна с клеточной стенкой грамотрицательных бактерий.

Относят к истинным бактериям. Прокариоты.

Нитрификация.

Продукты гниения белков и разложения мочевиныаммиак и аммиачные соли – могут быть непосредственно усвоены растениями, но они обычно превращаются в нитратысоли азотной кислоты.

В первой фазе нитрификации аммиак окисляется до азотной кислоты по схеме

DG = -662кДж/моль.

Процесс нитрификации проходит в несколько стадий, при этом образуется ряд промежуточных продуктов: гидроксиламин, нитроксил и др.

Во второй фазе азотистая кислота окисляется до азотной:

DG= -201кДж/моль.

Первая и вторая фаза единого процесса нитрификации вызываются разными возбудителями. С.Н. Виноградский объединил их в три рода:

1)Nitrosomonas. Имеют форму палочек, грамотрицательные, подвижные, снабжены одним жгутиком, спор не образуют. Широко распространены в почве и отличаются друг от друга формой и размерами.

2)Nitrosocystis. Способен образовывать зооглеи (кокковые формы микробов, окружающей капсулой)

3)Nitrosospira. Они разделяется на два вида. Бактерии обоих видов имеют правильную спиральную форму. Наряду со спирально закрученными нитями у старых культур встречаются короткие палочки и кокки.

Впоследнее время выделено еще два рода микробов, вызывающих первую фазу нитрификации.

Нитрифицирующие бактерии отрицательно относятся к органическим веществам. Сильная чувствительность нитрифицирующих микробов к органическим веществам отмечается в растворах; в почве этого не наблюдается, т.к. в ней водорастворимых веществ в значительных количествах никогда не бывает.

На процессы окисления аммиака влияют не только микробы, но и их ферменты. Кроме органического вещества на нитрификацию оказывает влияние концентрация аммиака. Его действие на культуру резко проявляется в условиях жидких сред. В почве же аммиак находится адсорбированном состоянии и не может оказывать угнетающего действия. Поэтому нитробактер сразу же окисляет азотистую кислоту в азотную.

На процесс нитрификации положительно сказывается присутствие кислорода. В обрабатываемых почвах процесс нитрификации протекает более интенсивно.