Главная · Гастрит · Механизмы терморегуляции тела. Механизм терморегуляции организма человека Физическая терморегуляция организма человека

Механизмы терморегуляции тела. Механизм терморегуляции организма человека Физическая терморегуляция организма человека

Терморегуляция - это механизм, который позволяет живым организмам поддерживать постоянство внутренней среды. Большинство процессов в теле человека зависят от температуры: обмен веществ, синтез белков и гормонов, пищеварение, Кроме того, перегрев или переохлаждение могут привести к серьезным заболеваниям и даже смерти.

Диапазон температур

Для нормальной жизнедеятельности человека крайне важна терморегуляция. здоровых людей находится в узком диапазоне от 36.0 до 37.0 по Цельсию. Резкое снижение или увеличение данных значений обычно приводит к летальному исходу.

На жаре человек интенсивно потеет. Потеря жидкости таким способом приводит к обезвоживанию, иногда довольно серьезному. Вместе с потом организм покидают витамины и минеральные вещества. Из-за дегидратации кровь становится гуще, нарушается обмен веществ. Нормальная потеря воды во время потоотделения - до трех процентов от общей массы тела. Если это значение перевалило за шестипроцентный барьер, страдают когнитивные функции. Для смертельного исхода достаточно двадцати процентов. Кроме того, существует еще одна опасность. Во время длительного пребывания на солнце организм накапливает больше тепла, чем отдает в окружающую среду, и по закону термодинамического равновесия постепенно тело человека нагревается до температуры воздуха, то есть до 39-41 градуса Цельсия. Это влечет за собой тепловой удар и потерю сознания. Сердечно-сосудистая система тоже работает на износ: пульс учащается, давление повышается, кровь с трудом проходит по сосудам.

Переохлаждение не менее опасно для человека. На холоде сосуды организма сужаются, что вызывает ишемию тканей. И если воздействие холодной температуры длительное, то возможно отмирание участков кожи или мышц. влияют и на обмен веществ, который совершается в несколько раз быстрее, так как организму нужна энергия для обогрева.

Ядро и оболочка

Условно все тело человека можно разделить на два уровня: ядро и оболочка. Ядро (по большей части это внутренние органы) имеет постоянную температуру около тридцати семи градусов. Это достигается балансом между теплопродукцией и теплоотдачей. Оболочка же представляет собой барьер между окружающей средой и ядром толщиной 2,5 см. Терморегуляция - это способность оболочки поддерживать постоянную температуру ядра.

Кожа здорового человека на разных участках может нагреваться от 24 до 36,6 градусов. Самые холодные - кончики пальцев, а самое теплое место - подмышка. Колебания температуры тела в течение суток достигают одного градуса: самая низкая - рано утром, а высокая - в шесть вечера.

Теплообразование и теплоотдача

Что такое терморегуляция и как она поддерживается в организме человека? На этот вопрос ответить не так легко, как кажется на первый взгляд. В нашем теле непрерывно образуется тепло, которое по большей части расходуется на обогрев внешней среды. Это процесс называется теплообменом. Регулируется он при помощи нервной системы, от результатов его зависят обмен веществ, деятельность сердца, сокращение мышц и т. д.

В норме теплопродукция равна теплоотдаче, то есть наблюдается изотермия. Причины терморегуляции просты - это помогает сохранить неприкосновенной температуру ядра и обеспечить определенную независимость организма от внешних условий. За час в человеке образует достаточно тепла для того, чтобы закипятить литр воды. И если бы не теплоотдача, то уже через трое суток после рождения все мы в буквальном смысле сварились бы изнутри. Поэтому процессы, помогающие людям избавиться от лишнего тепла, крайне важны.

Закаливание

Терморегуляция и закаливание идут рука об руку. Организм приспосабливается к воздействию все более низких или высоких температур, формируются новые механизмы сохранения постоянной температуры ядра.

В домашних условиях известно несколько самых распространенных способов закаливания. Например, обтирание прохладной водой. В первый раз вода должна быть 30 градусов, затем 28, 26 и так, пока не дойдет до 15 градусов Цельсия. Когда организм привыкнет к холоду, можно с обтираний переходить на обливания или душ. Эффективными признали также воздушные и солнечные ванны. Поначалу продолжительность сеансов не должна превышать 15 минут, но со временем можно довести время до 60. Однако стоит помнить, что длительная инсоляция может привести к проблемам с кожей и онкологическим заболеваниям.

Терморецепторы

Кожа в терморегуляции организма играет ключевую роль. Как самый большой орган человеческого организма, она выполняет множество функций, в том числе содержит терморецепторы (холодовые и тепловые). Известно, что холодовых примерно в десять раз больше, поэтому мы гораздо чувствительнее к низким температурам. Наибольшее скопление рецепторов находится на лице, шее, а меньше всего - в кончиках пальцев. Однако чувствительность у них имеет обратную пропорцию относительно количества. Несмотря на то что тепловых рецепторов больше они почти в два раза чувствительнее, чем холодовые.

Виды терморегуляции

Терморегуляция - это целый конгломерат процессов, направленных на поддержание постоянной температуры тела при помощи теплообмена. Механизм работы этой системы можно описать при помощи принципа «обратной связи». То есть сначала изменяется температура окружающей среды, на это реагируют рецепторы кожи и передают сигнал в головной мозг. А уже оттуда идет регуляция выработки тепла и его отдачи.

Все процессы терморегуляции можно разделить на два вида:

Физические;

Химические.

Физическая терморегуляция, в свою очередь, делится на испарение, излучение, теплопроведение и конвекцию. Среди выделяют сократительный и несократительный термогенез.

Физическая терморегуляция

Физическая терморегуляция - это совокупность процессов, обеспечивающих удаление тепла из организма. Для этого природой предусмотрено несколько способов:

Кондукция;

Конвекция;

Радиация;

Испарение.

Кроме того, организм может регулировать интенсивность кровообращения и степень расширения сосудов кожи, что также влияет на потерю тепла. Еще один механизм отдачи тепла - потоотделение. Оно наиболее эффективно в случае жаркого климата или искусственного повышения температуры окружающей среды.

В состоянии покоя, при комфортной температуре в 20 градусов Цельсия, человек путем излучения теряет около шестидесяти процентов тепла, испаряет всего двадцать, а остальное приходится на кондукцию и конвекцию. Всего за час мы теряем около ста килокалорий или четырехсот девятнадцать джоулей.

Испарение и излучение

Испарение - это выделение энергии в окружающее пространство за счет потери влаги через кожу или слизистые. Иначе этот процесс называется потоотделение. Находясь в комфортной температуре (около двадцати градусов Цельсия), человек каждый час теряет около 36 грамм жидкости. При повышении температуры или интенсивной работе это показатель увеличивается иногда до двух литров в час.

Конвекция - это динамичный способ потери тепла, который осуществляется движущимися частицами воды или воздуха, например, такие потоки создает ветер или вентилятор. Если просто, то тело, выделяя тепло, нагревает воздух рядом с кожей. Он становится легче, чем холодный, и поднимается выше, а его место занимает новая порция. Когда мы оказываемся на ветру или быстро движемся, воздух вокруг нас тоже перемещается быстрее, следовательно, тепло не задерживается возле кожи надолго.

Химическая терморегуляция

Терморегуляция и обмен веществ - тесно связанные понятия. Химический способ как раз основывается на изменении интенсивности процесса окисления и вибрации мышц. Энергию для обогрева организма получают путем гидролиза АТФ (аденозинтрифосфат). Он необходим для превращения сложных соединений в более простые. Тепло, которое при этом выделяется, рассеивается в окружающем пространстве. Это несократительный термогенез.

В зависимости от температуры окружающей среды обмен веществ может ускоряться или замедляться для сохранения постоянства ядра. Наиболее комфортно человек себя чувствует при 18-20 градусах Цельсия. Но это для воздуха. Вода же сильнее проводит тепло, поэтому и температура должна быть выше. Больше всего тепла производят мышцы во время аэробного гликолиза. Поэтому, когда нам холодно, тело начинает дрожать, чтобы увеличить теплопродукцию. Это состояние называется сократительный термогенез.

Управление терморегуляцией

Терморегуляция мозга проходит так же, как и всего остального организма, с той разницей, что именно здесь находится центр, который всем процессом и управляет. В гипоталамусе расположен центр терморегуляции, координирующий скорость обменных процессов, сокращение мышц, и тонус сосудов кожи.

Чувствительные нервные клетки этого участка мозга могут различить колебания до сотых и тысячных долей градуса. Они анализируют поступающую информацию и по принципу обратной связи регулируют внутреннюю температуру, устанавливая ее в зависимости от внешних обстоятельств.

В подчинении у гипоталамуса находятся щитовидная железа и надпочечники. Первая влияет на скорость обмена веществ, а вторые - на тонус сосудов и окислительные процессы в мышцах. Используя нейромедиаторы и корректирует состояние организма в соответствии с обстоятельствами.

Если температура тела превышает температуру среды, то тело будет отдавать тепло в среду. Отдача тепла в окружающую среду осуществляется излучением, теплопроведением, конвекцией и испарением.

Повышение температуры среды выше температуры тела приводит к приросту температуры тела за счёт излучения и проведения. В этих условиях освобождение от излишков тепла и охлаждение осуществляются только потоиспарением. Движение воздуха около кожи усиливает скорость испарения и тем самым увеличивает эффективность потери тепла (охлаждающий эффект вентилятора).

Физическая терморегуляция (теплоотдача.) Если температура тела превышает температуру среды, то тело будет отдавать тепло в среду. Отдача тепла в окружающую среду осуществляется излучением, теплопроведением, конвекцией и испарением.

    Излучение . Обнажённый человек в условиях комнатной температуры теряет около 60% от отдаваемого тепла посредством излучения инфракрасных волн длиной от 760 нм.

    Конвекция (15% отдаваемого тепла) - потеря тепла путём переноса движущимися частицами воздуха или воды. Количество тепла, теряемого конвекционным способом, возрастает с увеличением скорости движения воздуха (вентилятор, ветер). В воде величина отдачи тепла путём проведения и конвекции во много раз больше, чем на воздухе.

    Проведение - контактная передача тепла (3% отдаваемого тепла) при соприкосновении поверхности тела с какими-либо физическими телами (стул, пол, подушка, одежда и др.).

Излучение, конвекция и проведение происходят, когда температура тела выше температуры окружающей среды. Если температура поверхности тела равна или ниже температуры окружающей среды, то эти способы потери тепла организмом становятся неэффективными. Например, в обычных условиях теплопроведение играет небольшую роль, т.к. воздух и одежда плохо проводят тепло.

    Испарение - необходимый механизм выделения тепла при высоких температурах. Испарение воды с поверхности тела приводит к потере 2,43 кДж (0,58 ккал) тепла на каждый грамм испарившейся воды.

Неощутимое испарение - результат непрерывной диффузии молекул воды через кожу и дыхательные поверхности, оно не контролируется системой температурной регуляции Даже без видимого потоотделения вода испаряется с поверхности кожи и лёгких в пределах от 700 – 850 мл воды в день (300 – 350 мл – с поверхности легких, 400 – 500 мл – с поверхности кожи) , вызывая потерю тепла порядка 12–16 ккал/час .

Интенсивность процесса зависит от относительной влажности среды : в насыщенном водяными парами воздухе испарение не происходит. Поэтому в бане пот выделяется в большом количестве, но не испаряется и стекает с поверхности кожи – неэффективное потоотделение .

При тяжелой физической работе в условиях высокой температуры среды пребывания потоотделение может достигать 10–12 л/сут. После тяжелой мышечной нагрузки путем испарения отдается 75% тепла, радиации – 12%, конвекции 13% (для сравнения: в покое при 20 0 С доля радиации составляет 66%, испарения - 19%, конвекции - 15%).

Вместе с потом теряется большое количество солей (в первую очередь - хлористого натрия) и витамина С. В связи с этим, нормы потребления данных веществ должны быть значительно расширены в рационе людей, работающих в горячих цехах и в условиях жаркого климата.

В теплоотдаче принимают участие кожа, слизистые, легкие, сердечно-сосудистая и выделительная системы .

Особо важную роль в процессах теплоотдачи играет состояние кожных сосудов, а также частота сердечных сокращений и дыхания.

Сердечно-сосудистая система влияет на интенсивность теплоотдачи за счет перераспределения крови в сосудах и изменения объема циркулирующей крови.

На холоде кровеносные сосуды кожи, в основном артериолы, суживаются; открываются артериовенозные анастомозы. Это уменьшает количество крови в капиллярах. В результате повышается термоизоляция организма и тепло сохраняется за счет ограничения теплоотдачи. За счет перераспределения крови увеличивается объемная скорость кровотока во внутренних органах – это способствует сохранению тепла в них – реакция теплоконсервации .

При повышении температуры окружающей среды:

1) сосуды кожи расширяются, количество циркулирующей в них крови увеличивается;

2) возрастает объем циркулирующей крови за счет перехода воды из тканей в сосуды и выброса крови из селезенки и других кровяных депо. В результате увеличивается теплоотдача путем радиации и конвекции.

Дыхательная система – аналогичный результат возникает и при учащении дыхания из-за выведения из организма большего количества нагретого воздуха. Особенно важное значение имеет у непотеющих животных (либо лишенных потовых желез, либо имеющих густую шерсть, затрудняющую потоотделение) – собаки, кошки и др. При повышении температуры среды у них развивается тепловая одышка – сильно учащенное, но крайне поверхностное дыхание. Увеличивает испарение воды со слизистой полости рта и верхних дыхательных путей.

Теплоотдаче препятствуют :

1) слой подкожной жировой клетчатки – в связи с малой теплопроводностью жира;

2) одежда – за счет того, что между ней и кожей находится слой неподвижного воздуха, являющегося плохим проводником тепла (его температура достигает 30 0 С). Теплоизолирующие свойства одежды тем лучше, чем более мелкоячеиста ее структура – шерстяная и меховая. Непроницаемая для воздуха одежда (резиновая) переносится плохо – слой воздуха между ней и телом быстро насыщается водяными парами и испарение прекращается.

3) изменение положения тела : когда холодно, животные «сворачиваются в клубок», что уменьшает поверхность теплоотдачи; когда жарко, наоборот, принимают положение, при котором она возрастает;

4) реакция кожных мышц - для человека имеет рудиментарное значение («гусиная кожа»), у животных изменяет ячеистость шерстяного покрова, в результате чего теплоизолирующая роль шерсти улучшается.

Постоянство температуры тела обеспечивается совместным действием механизмов, регулирующих с одной стороны, интенсивность обмена веществ и зависящее от него теплообразование(химическая терморегуляция), а с другой – теплоотдачу(физическая терморегуляция).

Таким образом, полезным приспособительным результатом деятельности рассматриваемой функциональной системы является постоянство не температуры кожи (температурной «оболочки»), а температуры внутренних органов (температурного «ядра»)

ФУНКЦИОНАЛЬНАЯ СИСТЕМА, ОБЕСПЕЧИВАЮЩАЯ ПОСТОЯНСТВО ТЕМПЕРАТУРЫ ТЕЛА

1 звено - полезный приспособительный результат – поддержание температуры тела на постоянном уровне.

2 звено - рецепторы . Терморецепцию осуществляют свободные окончания тонких сенсорных волокон типа А (дельта) и С.

(Регуляция постоянства температуры – это сложнорефлекторный акт, осуществляющийся в результате раздражения рецепторов кожи, кожных и подкожных сосудов, а также ЦНС.)

3 звено функциональной системы – нервный центр

4 звено функциональной системы исполнительные органы. Температура тела определяется определяется соотношением интенсивности:

1) образования тепла

2) отдачи тепла

МЕХАНИЗМЫ терморегуляции

Нервные механизмы терморегуляции в своей основе имеют рефлекторные дуги, в состав которых входят рецепторные образования (тепловые и холодовые рецепторы). По афферентным нервным волокнам импульсация от рецепторного аппарата достигает ряда основных центров вегетативной регуляции, прежде всего структур гипоталамуса. Эфферентной частью рефлекторной дуги являются симпатические и парасимпатические нервные волокна, иннервирующие внутренние органы, а также сосуды. Эфферентная импульсация осуществляется и по двигательным соматическим волокнам, регулирующим деятельность скелетной мускулатуры.

Локализация и свойства терморецепторов.

Периферические терморецепторы находятся в коже, подкожных тканях, кожных и подкожных сосудах. Кожные терморецепторы представляют собой неинкапсулированные нервные окончания.

Центральные терморецепторы расположены в медиальной преоптической области гипоталамуса (центральные нейроны-термосенсоры), ретикулярной формации среднего мозга, спинном мозге.)

Тепловые и холодовые рецепторы в ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам. Замечено повышение теплообразования при охлаждении сонной артерии, приносящей кровь к головному мозгу.

Доказательства наличия центральных терморецепторов :

1 ) погружение денервированных задних конечностей собаки в холодную воду вызывает дрожь мышц головы, передних конечностей, туловища и увеличение теплообразования. Это связано с тем, что «холодная» кровь раздражает центральные терморецепторы;

2)при охлаждении сонной артерии, приносящей кровь к головному мозгу , развиваются дрожь и сужение сосудов кожи, что приводит к повышению теплообразования и ограничению теплоотдачи соответственно.

Найдены терморецепторы в дыхательных путях, в продолговатом мозге и в двигательной коре.

Таким образом, организм человека имеет двойную систему контроля температуры тела: воздействие внешней среды (тепловое или холодовое) обнаруживается кожными рецепторными образованиями , температура внутренней среды регистрируется терморецепторами внутренних органов и структур ЦНС.

Функциональная мобильность терморецепторов. Свойство терморецепторов кожи изменять свою чувствительность к температурным воздействиям в зависимости от изменения общего состояния организма отражает универсальное свойство рецепторов, открытое П.Г. Снякиным и получившее название «функциональная мобильность рецепторов».

Кроме того терморецепторы подразделяют на тепловые и холодовые .

X олодовые рецепторы располагаются в толще кожи, на глубине около 0,17 мм , тепловые рецепторы - на глубине 0,3 мм . Общее число точек поверхности кожи, воспринимающих холод, значительно превышает число точек, воспринимающих тепло. Холодовые и тепловые рецепторы располагаются неравномерно по кожной поверхности. Имеются индивидуальные зоны преимущественной локализации тепловых и холодовых терморецепторов.

Среди периферических терморецепторов преобладают холодовые , среди центральных – тепловые . При оптимальной для человека температуре окружающей среды терморецепторы генерируют разряды со стационарной частотой. С понижением окружающей температуры частота импульсации и холодовых рецепторов возрастает, тепловых - снижается. Наоборот, при повышении окружающей температуры возрастает частота импульсации тепловых рецепторов и снижается - холодовых.

Частота импульсов холодовых рецепторов кожи максимальна при температуре равной 20-30 0 С, а для тепловых рецепторов температура равна 38-43 0 С . Ощущение горячего – жжение – возникает при температуре выше 45 0 С и воспринимается другими рецепторами – горячевыми или рецепторами жжения(о тносятся к полимодальным ноцицепторам и являются промежуточным звеном между терморецепторами и ноцицепторами).

Роль нервных центров .

Поддержание температуры тела на оптимальном для метаболизма уровне осуществляется за счет регулирующего влияния ЦНС. Впервые наличие в головном мозге центра, способного изменять температуру тела, было обнаружено в 80-х годах XIX в. К. Бернаром . Его опыт, получивший название «теплового укола», состоял в следующем: в область промежуточного мозга через трепанационное отверстие вводили электрод, вызывающий раздражение данной области. Спустя 2-3 ч после введения электрода наступало стойкое повышение температуры тела животного. В дальнейших исследованиях было установлено, что важнейшая роль в процессах терморегуляции принадлежит гипоталамусу.

Согласно современным представлениям, терморегуляция осуществляется распределенной системой , основной частью которой является гипоталамический терморегуляционный механизм

Экспериментально было установлено, что основные (главные) центры терморегуляции находятся в гипоталамусе (за счет них воспринимаются изменения в окружающей и внутренней среде). При разрушении гипоталамуса – утрачивается способность регулировать температуру тела и животное становится пойкилотермным. . К нейронам гипоталамической области адресуется и импульсация, возникающая в терморецепторах внутренних органов и поверхности кожи. Сенсорная информация от терморецепторов распространяется по нервным волокнам типа А-дельта и через лемнисковые пути к нейронам таламуса, а затем в гипоталамус и сенсомоторную область коры большого мозга.

Известно, что регуляция процесса теплообразования (химическая терморегуляция) осуществляется деятельностью ядер задней части гипоталамуса ; процессы физической терморегуляции (теплоотдачи) обусловлены ядрами переднего гипоталамуса. Таким образом, в гипоталамусе имеется два регулирующих центра: центр теплообразования и центртеплоотдачи .

Центры теплоотдачи (передние ядра гипоталамуса) - разрушение этих структур приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях высокой температуры окружающей среды. Температура их тела при этом начинает возрастать, животные переходят в состояние гипертермии, причем гипертермия может развиться даже при комнатной температуре. Раздражение этих структур через вживленные электроды электрическим током вызывает у животных характерный синдром: одышку, расширение поверхностных сосудов кожи, падение температуры тела. Вызванная предварительным охлаждением мышечная дрожь у них прекра­щается.

Центры теплообразования (латерально-дорсальный гипоталамус) - их разрушение приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях пониженной температуры окружающей среды. Температура их тела в этих условиях начинает падать, и животные переходят в состояние гипотермии. Электрическое раздражение соответствующих центров гипоталамуса вызывает у животных следующий синдром: 1) сужение поверхностных сосудов кожи;

  • III. Механизмы регуляции количества ферментов: индукция, репрессия, дерепрессия.
  • VI. Факторы, вовлекающие механизмы, связанные с активацией комплемента.
  • Поддержание постоянства температуры внутренней среды организма заключается в согласовании процессов образования и выделения тепла. Эти процессы осуществляются с помощью двух механизмов теплопродукции (химическая терморегуляция) и теплоотдачи (физическая терморегуляция).

    химическая терморегуляция Во всех органах в результате обменных процессов происходит теплопродукция основными механизмами изменения которой являются активность обмена веществ и мышечная работа. Поэтому оттекающая от внутренних органов и работающих мышц кровь, как правило, имеет более высокую температуру, чем притекающая. Среди различных мышечных движений (локомоций) следует выделить особую форму их - дрожь. Дрожь направлена целиком лишь на увеличение теплообразования, в то время как при обычных локомоциях часть энергии расходуется на перемещение соответствующей конечности и лишь часть - на термогенез.

    физическая терморегуляция Теплоотдача совершается несколькими путями.

    1. Теплопроведение происходит при непосредственном контакте тела с плотным субстратом в результате этого часть тепла передаётся менее нагретому предмету, а величина теплопроведения определяется температурным градиентом и их теплопроводностью.

    Сходным с проведением является конвекционный путь. Соприкасающийся с поверхностью тела воздух при наличии градиента температур нагревается. Нагретый воздух становится более легким и, поднимаясь от тела, освобождает место новым порциям воздуха и тем самым, забирает часть тепла. Интенсивность естественной конвекции может быть увеличена дополнительным движением воздуха, уменьшением препятствия доступу его к телу соответствующей одеждой.

    2. Теплоизлучение Тепло от тела может отводиться и с помощью длинноволнового инфракрасного излучения. Для этого также необходим градиент температур: например, между более теплой кожей и холодными стенами.

    3. Испарение Охлаждению кожи способствует то, что для испарения 1 мл пота расходуется 0,58 ккал.

    При комнатной температуре у раздетого человека около 60% тепла отдается за счет теплоизлучения, около 12-15% - конвекции воздуха и 2-5%-теплопроведения, около 20% - испарения.

    Система терморегуляции

    Физические и химические механизмы терморегуляции в организме реализовываются биологическими процессами. Так изменение теплопродукции обеспечивается регуляцией обмена веществ нервной и эндокринной системами организма, теплоизлучение и теплопроведение - расширением или сужением периферических сосудов, испарение - увеличением или уменьшением потоотделения.

    Симпатические нервы ускоряют процессы обмена веществ. Аналогичную функцию выполняют катехоламины надпочечников и тиреоидные гормоны. Суть дрожательных непроизвольных сокращений заключается в резком повышении процесса теплообразования, так как при этом вся энергия мышечного сокращения превращается не в механическое передвижение, а в тепло.

    Ведущую роль в изменении процессов теплоотдачи играет перераспределение кровотока. Сужение сосудов кожи и подкожной клетчатки, закрытие артерио-венозных анастомозов способствуют меньшему притоку тепла и сохранению его в организме. В противоположность этому, при расширении сосудов возможности для более эффективного проявления физических способов теплоотдачи увеличиваются. При расширении сосудов температура кожи может возрастать на 7-8 С о. Тонус сосудов контролируется гормонами и вегетативными нервами. Симпатическими нервами регулируется также и процесс потовыделения.

    Температура тела контролируется терморецепторами периферическими и центральными. Расположенные в коже периферические рецепторы содержат два типа рецепторов - тепловые и холодовые. Центральные рецепторы находятся в гипоталамусе в основном в передней преоптической области. Эти рецепторы играют главенствующую роль в регуляции теплообмена, так как они контролируют температуру ядра.

    При температуре кожи в диапазоне 34-38 о С импульсация в обоих типах рецепторов минимальна. Это создает ощущение температурного комфорта. Примерно по такой же схеме функционируют и центральные терморецепторы. Но для них "температурное окно" уже, оно в пределах 37-37,5 о С.

    В передних отделах гипоталамуса расположены нейроны центра терморегуляции , через которые регулируется процесс теплоотдачи. Основным центром, связанным с эффекторами, является отдел заднего гипоталамуса. Эти нейроны через симпатические нервы, влияют на кровеносные сосуды, потовые железы, метаболизм.

    Лихорадка (febris) - это типовой патологический процесс, характерный для человека и высших гомойотермных животных, выражающийся в активном повышении температуры тела в результате перестройки центров терморегуляции под влиянием пирогенных веществ. Лихорадка обусловлена смещением постоянной установочной точки температурного гомеостаза на более высокий уровень при сохранении механизмов терморегуляции.

    Следует подчеркнуть, что постоянная температура тела у всех теплокровных поддерживается только внутри организма (в "ядре тела"). Температура "оболочки тела" - кожи, мышц - может колебаться в широких пределах в зависимости от температуры среды. Поэтому объективным показателем повышения температуры тела служит подъем температуры ядра тела.

    По этиологии различают две основные группы лихорадок:

    1. Инфекционные.

    экзогенные пирогены . При попадании в организм гомойотермных животных и человека они индуцируют образование эндогенных пирогенов , запускающих последующие звенья патогенетической цепи лихорадки. Эндогенные пирогены носят также название вторичных пирогенов и являются, в отличие от первичных экзогенных пирогенов патогенетическими факторами лихорадки. Источниками эндопирогенов являются фагоцитирующие клетки - нейтрофильные лейкоциты, моноциты, альвеолярные и перитонеальные макрофаги, клетки РЭС - лейкоцитарный пироген. Помимо ЛП макрофаги способны в ответ на воздействие экзопирогенов синтезировать интерлейкины. ИЛ-1 оказывает влияние на центр терморегуляции подобно ЛП, вызывая лихорадку, а также стимулирует Т-лимфоциты. Такая стимуляция лимфоцитов, с одной стороны, приводит к активации иммунной системы в борьбе с инфекцией, а с другой - стимулирует лимфоциты к выделению лимфокинов, активирующих процесс образования эндопирогенов макрофагами. На примере эффектов ИЛ-1 прослеживается прямая взаимосвязь лихорадки и процессов иммунной защиты.

    1. Неинфекционные. (белковая, солевая)

    Неинфекционные лихорадки возникают под влиянием многочисленных факторов, вызывающих повреждение тканей и асептическое воспаление. Неинфекционные лихорадки встречаются, например, при ожогах, механических травмах, после операций, при внутренних кровоизлияниях, инфарктах, аллергических реакциях, аутоиммунных процессах и т.д.. Развитие лихорадки в подобных случаях определяется эмиграцией лейкоцитов в очаг воспаления, их активацией и выделением образующихся в них лейкоцитарных пирогенов. Из этого следует, что несмотря на различие этиологии, патогенетический механизм возникновения неинфекционной лихорадки идентичен таковому при лихорадке инфекционного генеза, то есть в обоих случаях воздействие этиологических факторов приводит к образованию эндопирогенов, которые и определяют все последующие процессы, развивающиеся при лихорадке.

    Ареал проживания человека распространяется от полюсовых зон, где температура воздуха порой достигает -86°С, до экваториальных саванн и пустынь, в наиболее жарких участках которых она приближается к +50°С в тени! Тем не менее в таком широком диапазоне температур человек сохраняет активную жизнеспособность и достаточную работоспособность благодаря своей термостабильности, когда температура тела колеблется в относительно узких границах – от 36 до 37°С.

    Гомойотермия – постоянство температуры тела – делает человека независимым от температурных условий проживания, так как обеспечивающие его жизнедеятельность биохимические реакции продолжают осуществляться на оптимальном уровне благодаря сохранению адекватной активности обеспечивающих их тканевых ферментов и витаминов, катализирующих и активирующих отдельные стороны обмена веществ, тканевых гормонов, нейромедиаторов и других веществ, от которых зависит нормальная деятельность организма. Смещение же температуры в ту или иную сторону резко меняет активность этих веществ, причем в разной степени для каждого из них – в результате наступает разобщение в активности протекания отдельных сторон обмена веществ. У животных пойкилотермных, холоднокровных, температура тела которых определяется окружающей температурой (повышается или понижается вместе с последней), активность их тканевых ферментов как биологических катализаторов меняется вместе с изменением внешних тепловых условий. Вот почему при снижении температуры степень проявления их жизнедеятельности снижается вплоть до полной остановки – так называемый анабиоз, а при очень высокой – либо наступает смерть, либо высушивание, которое у некоторых из пойкилотермов является также разновидностью анабиоза. Так, с изменением внешней температуры жизнедеятельность некоторых насекомых (саранча) может восстанавливаться как после замерзания до температуры жидкого азота (–189°С), так и после высушивания. Описан случай оживления, хотя и кратковременного, гигантского тритона, замерзшего в леднике, по мнению специалистов, по крайней мере около 5000 лет назад.

    Таким образом, способность сохранять неизменной температуру тела при различных условиях существования делает теплокровных независимыми от обстоятельств природы и способными сохранять высокий уровень жизнеспособности. Такая способность обусловлена сложной системой терморегуляции, обеспечивающей уменьшение выработки тепла и активную его отдачу при опасности перегревания и активизацию термогенеза при ограничении отдачи тепла – при опасности переохлаждения.

    Статистика показывает, что в России из всех случаев временной утраты трудоспособности более 40% приходится на простудные заболевания, что дает основание обывателю считать систему терморегуляции несовершенной. Однако есть много фактов, указывающих на высокую природную устойчивость человека к действию низких температур. Так, йоги-респы соревнуются при температуре ниже –20°С в скорости высушивания мокрых простыней теплом своего тела, сидя нагишом на льду замерзшего озера. Стали традиционными проплывы специально подготовленных пловцов через Берингов пролив из Аляски на Чукотку (более 40 км) при температуре воды +4°С – +6°С. Якуты натирают новорожденных снегом, а остяки и тунгусы погружают их в снег, обливают холодной водой и затем закутывают в оленьи шкуры... В таком случае, по-видимому, скорее следует говорить об извращении совершенных механизмов терморегуляции человека далекими от сформировавших их в эволюции условиями жизни современного человека, чем о несовершенстве самих механизмов.

    В то время как большинство функций жизнедеятельности – кровообращение, дыхание, пищеварение и др. – имеют какой-либо специфический структурно-функциональный аппарат, терморегуляция такого органа не имеет и является функцией всего организма в целом.

    Согласно предложенной И. П. Павловым схеме, организм теплокровного можно представить в виде относительно термостабильного «ядра» и имеющей большой разброс температур «оболочки». Ядро, температура которого колеблется в пределах 36,8–37,5°С, включает преимущественно жизненно важные внутренние органы: сердце, печень, желудок, кишечник и т.д. Особенно следует отметить роль печени, имеющей относительно высокую температуру – выше 37,5°С, и толстого кишечника, микрофлора которого в процессе своей жизнедеятельности вырабатывает много тепла, обеспечивающего поддержание температуры прилежащих тканей. Термолабильную оболочку составляют конечности, кожные и подкожные ткани, мышцы и т.д. Температура различных участков оболочки колеблется в широких пределах. Так, температура пальцев ног составляет около 24°С, голеностопного сустава – 30–31°С, кончика носа – 25°С, подмышечной впадины, прямой кишки – 36,5–36,9°С и т.д. Однако температура оболочки очень подвижна, что определяется условиями жизнедеятельности и состоянием организма, поэтому и толщина ее может меняться от очень тонкой при жаре до очень мощной, сжимающей ядро – при холоде. Такие взаимоотношения ядра и оболочки обусловлены тем, что первая преимущественно производит тепло (в покое), а вторая – должна обеспечивать сохранение этого тепла. Именно этим объясняетсятообстоятельство, что у закаленных людей оболочка на холоде быстро и надежно обволакивает ядро, сохраняя оптимальные условия для поддержания деятельности жизненно важных органов и систем, а у незакаленных оболочка и в этих условиях остается тонкой, создавая угрозу переохлаждения ядра (так, при снижении температуры легких всего лишь на 0,5°С возникает угроза пневмонии).

    Термостабильность организма обеспечивается в основном двумя взаимодополняющими механизмами регуляции – физическим и химическим.Физическая терморегуляция преимущественно активизируется при опасности перегревания и заключается в отдаче тепла в окружающую среду. При этом включаются все возможные механизмы теплоотдачи: теплоизлучение, теплообмен, конвекция и испарение. Теплоизлучение осуществляется за счет инфракрасных лучей, исходящих от имеющей высокую температуру кожи. Теплопроведение реализуется за счет разницы температур между кожей и окружающим воздухом. Увеличение этой разницы осуществляется за счет гиперемии – расширения кожных сосудов и притока сюда большего количества теплой крови от внутренних органов, из-за чего и окраска кожи при жаре становится розовой. При этом эффективность теплоотдачи определяется теплопроводностью и теплоемкостью внешней среды: так, эти показатели в соответствующих температурах для воды в 20–27 раз выше, чем воздуха. Отсюда становится понятным почему термокомфортная температура воздуха для человека составляет около 18°С, а воды – 34°С. Теплоотдача за счет испарения пота является весьма эффективной, так как при испарении 1 мл пота с поверхности тела организм теряет 0,56 ккал тепла. Если учесть, что взрослый человек вырабатывает даже в условиях низкой двигательной активности около 800 мл пота, то становится понятной эффективность этого способа.

    В различных условиях жизнедеятельности соотношение потерь тепла тем или иным способом заметно меняется. Так, в покое и при оптимальной температуре воздуха организм 31% образующегося тепла теряет проведением, 44% – излучением, 22% – испарением (в том числе и за счет влаги с дыхательных путей) и 3% – конвекцией. При сильном ветре возрастает роль конвекции, при повышении влажности воздуха – проведения, а при усиленной работе – испарения (например, при напряженной двигательной активности испарение пота порой достигает 3–4-х литров в час!).

    Эффективность теплоотдачи организма исключительно высока. Биофизические расчеты показывают, что нарушение этих механизмов даже у находящегося в покое человека привело бы к повышению температуры его тела в течении часа до 37,5°С, а через 6 часов – до 46–48°С, когда начинается необратимое разрушение белковых структур.

    Химическая терморегуляция приобретает особое значение при опасности переохлаждения организма. Потеря человеком относительно животных шерстяного покрова сделала его особенно чувствительным к действию низких температур, о чем свидетельствует тот фактор, что у человека холодовых рецепторов почти в 30 раз больше, чем тепловых. Вместе с тем совершенствование механизмов адаптации к холоду привело к тому, что снижение температуры тела человек переносит гораздо легче, чем ее повышение. Так, грудные дети легко переносят снижение температуры тела на 3–5°С, но тяжело – повышение на 1–2°С. Взрослый человек без каких-либо последствий переносит переохлаждение до 33–34°С, но теряет сознание при перегревании от внешних источников до 38,6°С, хотя при лихорадке от инфекции может сохранить сознание и при 42°С. Вместе с тем отмечены случаи оживления замерзших людей, температура кожи которых опускалась ниже точки замерзания.

    Суть химической терморегуляции заключается в изменении активности обменных процессов в организме: при высокой внешней температуре она снижается, а при низкой – возрастает. Исследования показывают, что при снижении окружающей температуры на 1°С у обнаженного человека в покое активность метаболизма возрастает на 10%. (Однако выключение наркозом и так называемыми нейролептиками высших регуляторных механизмов термостабильности у теплокровных делает их зависимыми от окружающей температуры, и при охлаждении температуры их тела до 32°С потребление ими кислорода снижается до 50%, при 20°С –до 20%, а при +1°С –до 1% от исходного уровня.)

    Особое значение для поддержания температуры тела играет тонус скелетных мышц, который возрастает при снижении окружающей температуры и снижается – при потеплении. Показательно, что эти процессы протекают тем активнее, чем опаснее грозящее нарушение термостабильности. Так, при температуре воздуха 25–28°С (и особенно в сочетании с высокой влажностью) мышцы в значительной степени расслаблены, и воспроизводимая ими тепловая энергия ничтожна. Наоборот, при опасности переохлаждения все большее значение приобретает дрожь – нескоординированные сокращения мышечных волокон, когда внешняя механическая работа практически полностью отсутствует, и почти вся энергия сокращающихся волокон переходит в тепловую энергию (это явление получило название несократительного термогенеза). Нет ничего удивительного поэтому в том, что при дрожи теплопродукция организма может возрасти более чем в три раза, а при напряженной физической работе – в 10 и более раз.

    Несомненное значение в химической терморегуляции играют и легкие, которые за счет изменения активности обмена входящих в их структуру высококалорийных жиров поддерживают относительно постоянную свою температуру, – именно поэтому при высокой внешней температуре оттекающая от легких кровь прохладнее, а при низкой – теплее вдыхаемого воздуха.

    Физический и химический механизмы терморегуляции работают с высокой степенью согласования благодаря наличию в ЦНС соответствующего центра в области промежуточного мозга (гипоталамус).Вот почему при высокой температуре окружающей среды, с одной стороны, усиливается теплоотдача (за счет повышения температуры кожи, активизации дыхания, усиления процессов испарения пота и т.д.), а с другой – снижается теплопродукция (за счет снижения тонуса мышц, перехода к усвоению организмом менее энергосодержащих продуктов); при низких же температурах – наоборот: возрастает теплопродукция и снижается теплоотдача.

    Таким образом, совершенные механизмы терморегуляции человека позволяют поддерживать оптимальную жизнеспособность в широком диапазоне внешних температур.

    Вопрос 1. Что такое терморегуляция?

    Терморегуляция – совокупность физиологических процессов в организме человека и теплокровных животных, направленных на поддержание постоянной температуры тела.

    Вопрос 2. Почему терморегуляция необходима организму?

    Терморегуляция имеет важное значение. При понижении температуры тела происходит усиление теплообразования (при отклонении от оптимальной температуры). При охлаждении у человека, благодаря действию на холодовые рецепторы, появляется дрожь, которая представляет собой беспорядочное непроизвольное сокращение мышц. Благодаря дрожи повышаются энергетические затраты, что влечёт за собой повышение теплообразования и соответственно температуры тела.

    При повышении температуры окружающей среды кровеносные сосуды кожи расширяются, через них протекает больше крови, кожа нагревается, отдача тепла в окружающую среду увеличивается.

    Вопрос 3. Каковы механизмы терморегуляции?

    Кровеносные сосуды пронизывают все наше тело, проникая в мышцы, печень и другие органы, где образуется тепло. Кровь в этих органах нагревается и, перетекая по сосудам в другие части тела, отдает часть своего тепла. Так кровь разносит тепло по организму, как бы выравнивая температуру внутри тела.

    Вопрос 4. Какова температура тела человека?

    И зимой и летом температура на поверхности кожи здорового человека составляет 36,6 °С, а естественные колебания ее не превышают 2 °С.

    Вопрос 5. Как изменяется просвет кровеносных сосудов при изменении температуры воздуха?

    Когда температура окружающей среды становится высокой, кровеносные сосуды кожи расширяются, через них протекает больше крови, кожа нагревается, отдача тепла в окружающую среду увеличивается. Если же температура окружающего воздуха падает, организм стремится сохранить тепло. Просветы кровеносных сосудов суживаются, отдача тепла уменьшается.

    Вопрос 6. Какую роль играет кожа в процессе терморегуляции?

    Через поверхность кожи теряется более 80% тепла. При расширении капилляров выделяется тепло, при сужении – сохраняется тепло. Выделение влаги с солями и мочевиной в виде пота. За эту функцию отвечает внутренний слой кожи – собственно кожа (дерма). Вот в этом и заключается роль кожи в процессе терморегуляции.

    Вопрос 7. Что такое пот?

    Пот - водный раствор солей и органических веществ, выделяемый потовыми железами. Испарение пота служит для терморегуляции у многих видов млекопитающих.

    Вопрос 8. Как осуществляется потоотделение?

    Потоотделение - процесс выделения на кожную поверхность жидкого секрета (пота) потовыми железами. У человека потоотделение осуществляется гл. обр. эккринными железами, располагающимися почти на всей кожной поверхности, тогда как секреция апокринных потовых желез редуцирована.

    В норме потоотделение имеет рефлекторную природу. Начальным звеном рефлекса потоотделения являются терморецепторы кожи, внутренних органов и мышц, адекватным раздражением для которых служит высокая температура воздуха, прием горячей или острой пищи и жидкостей, повышенная теплопродукция при физических нагрузках, лихорадке или эмоциональных переживаниях. Эфферентные нервы, иннервирующие потовые железы, относятся к симпатической нервной системе, но имеют холинергическую природу; секреция пота усиливается под действием ацетилхолина и подавляется атропином.

    В эфферентной части рефлекторной дуги потоотделительного рефлекса можно выделить 5 уровней: 1) путь от коры мозга к гипоталамусу; 2) от гипоталамуса к продолговатому мозгу; 3) от продолговатого мозга, частично перекрещиваясь, волокна подходят к нейронам боковых рогов спинного мозга на уровне Th2-L2; 4) от нейронов боковых рогов спинного мозга к узлам пограничной симпатической цепочки; 5) от нейронов симпатической цепочки к потовым железам.

    Вопрос 9. Что влияет на интенсивность потоотделения?

    На потоотделение влияет несколько причин. Это температура воздуха, его движение и влажность.

    ПОДУМАЙТЕ

    Почему температура тела человека не повышается даже в очень жаркую погоду?

    В сильную жару, когда температура тела ниже температуры ок-ружающей среды, расширение сосудов уже не может усилить от¬дачу тепла. В этом случае опасность перегревания устраняется потоотделением. Испаряясь, пот поглощает с поверхности кожи большое количество тепла. Вот почему температура тела человека не повышается даже в самую жаркую погоду. Человек мог бы выдержать температуру в 70-80°С, но при этом у него должно выделиться 9-16 л пота за несколько часов.