Главная · Гастрит · Магнитные поля опеределение, источники, санпин. Теория магнитного поля и интересные факты о магнитном поле земли

Магнитные поля опеределение, источники, санпин. Теория магнитного поля и интересные факты о магнитном поле земли

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).

Опыт Эрстеда

Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.

Опыт Ампера
Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

Свойства магнитного поля

1. Материально, т.е. существует независимо от нас и наших знаний о нём.

2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Эти токи представляют собой движение электронов по орбитам в атоме.

Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.


7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.

Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

8. Магнитное поле характеризует вектор магнитной индукции.

Вектор магнитной индукции - векторная величина, характеризующая магнитное поле.

Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:

если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.

/ магнитное поле

Тема: Магнитное поле

Подготовил: Байгарашев Д.М.

Проверила: Габдуллина А.Т.

Магнитное Поле

Если два параллельно расположенных проводника подсоединить к источнику тока так, чтобы по ним прошел электрический ток, то в зависимости от направления тока в них проводники либо отталкиваются, либо притягиваются.

Объяснение этого явления возможно с позиции возникновения вокруг проводников особого вида материи - магнитного поля.

Силы, с которыми взаимодействуют проводники с током, называются магнитными .

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками". Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные - притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Магнитное поле в любой точке можно охарактеризовать вектором В, который называетсявектором магнитной индукции или магнитной индукцией в точке.

Магнитная индукция В - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь:

За направление вектора магнитной индукции В принимается направление положительной нормали к рамке, которое связано с током в рамке правилом правого винта, при механическом моменте, равном нулю.

Точно так же, как изображали линии напряженности электрического поля, изображают линии индукции магнитного поля. Линия индукции магнитного поля - воображаемая линия, касательная к которой совпадает с направлением В в точке.

Направления магнитного поля в данной точке можно определить еще как направление, которое указывает

северный полюс стрелки компаса, помещенный в эту точку. Считают, что линии индукции магнитного поля направлены от северного полюса к южному.

Направление линий магнитной индукции магнитного поля, созданного электрическим током, который течет по прямолинейному проводнику, определяется правилом буравчика или правого винта. За направление линий магнитной индукции принимается направление вращения головки винта, которое обеспечивало бы поступательное его движение по направлению электрического тока (рис. 59).

где n 01 = 4Пи 10-7В с/(А м). - магнитная постоянная, R - расстояние, I - сила тока в проводнике.

В отличие от линий напряженности электростатического поля, которые начинаются на положительном заряде и оканчиваются на отрицательном, линии индукции магнитного поля всегда замкнуты. Магнитного заряда аналогично электрическому заряду не обнаружено.

За единицу индукции принимается одна тесла (1 Тл) - индукция такого однородного магнитного поля, в котором на рамку площадью 1 м2, по которой течет ток в 1 А, действует максимальный вращающий механический момент сил, равный 1 Н м.

Индукцию магнитного поля можно определить и по силе, действующей на проводник с током в магнитном поле.

На проводник с током, помещенный в магнитное поле, действует сила Ампера, величина которой определяется следующим выражением:

где I - сила тока в проводнике, l - длина проводника, В - модуль вектора магнитной индукции, а - угол между вектором и направлением тока.

Направление силы Ампера можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца располагаем по направлению тока в проводнике, то отогнутый большой палец показывает направление силы Ампера.

Учитывая, что I = q 0 nSv, и подставляя это выражение в (3.21), получим F = q 0 nSh/B sin a . Число частиц (N) в заданном объеме проводника равно N = nSl, тогда F = q 0 NvB sin a .

Определим силу, действующую со стороны магнитного поля на отдельную заряженную частицу, движущуюся в магнитном поле:

Эту силу называют силой Лоренца (1853-1928). Направление силы Лоренца можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца показывали направление движения положительного заряда, большой отогнутый палец покажет направление силы Лоренца.

Сила взаимодействия между двумя параллельными проводниками, по которым текут токи I 1 и I 2 равна:

где l - часть проводника, находящаяся в магнитном поле. Если токи одного направления, то проводники притягиваются (рис. 60), если противоположного направления - отталкиваются. Силы, действующие на каждый проводник, равны по модулю, противоположны по направлению. Формула (3.22) является основной для определения единицы силы тока 1 ампер (1 А).

Магнитные свойства вещества характеризует скалярная физическая величина - магнитная проницаемость, показывающая во сколько раз индукция В магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции В 0 магнитного поля в вакууме:

По своим магнитным свойствам все вещества делятся на диамагнитные, парамагнитные иферромагнитные .

Рассмотрим природу магнитных свойств веществ.

Электроны в оболочке атомов вещества движутся по различным орбитам. Для упрощения считаем эти орбиты круговыми, и каждый электрон, обращающийся вокруг атомного ядра, можно рассматривать как круговой электрический ток. Каждый электрон, как круговой ток, создает магнитное поле, которое назовем орбитальным. Кроме того, у электрона в атоме есть собственное магнитное поле, называемое спиновым.

Если при внесении во внешнее магнитное поле с индукцией В 0 внутри вещества создается индукция В < В 0 , то такие вещества называются диамагнитными (n 1).

В диамагнитных материалах при отсутствии внешнего магнитного поля магнитные поля электронов скомпенсированы, и при внесении их в магнитное поле индукция магнитного поля атома становится направленной против внешнего поля. Диамагнетик выталкивается из внешнего магнитного поля.

У парамагнитных материалов магнитная индукция электронов в атомах полностью не скомпенсирована, и атом в целом оказывается подобен маленькому постоянному магниту. Обычно в веществе все эти маленькие магниты ориентированы произвольно, и суммарная магнитная индукция всех их полей равна нулю. Если поместить парамагнетик во внешнее магнитное поле, то все маленькие магниты - атомы повернутся во внешнем магнитном поле подобно стрелкам компаса и магнитное поле в веществе усиливается (n >= 1).

Ферромагнитными называются такие материалы, в которых n " 1. В ферромагнитных материалах создаются так называемые домены, макроскопические области самопроизвольного намагничивания.

В разных доменах индукции магнитных полей имеют различные направления (рис. 61) и в большом кристалле

взаимно компенсируют друг друга. При внесении ферромагнитного образца во внешнее магнитное поле происходит смещение границ отдельных доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается.

С увеличением индукции внешнего поля В 0 возрастает магнитная индукция намагниченного вещества. При некоторых значениях В 0 индукция прекращает резкий рост. Это явление называется магнитным насыщением.

Характерная особенность ферромагнитных материалов - явление гистерезиса, которое заключается в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля при его изменении.

Петля магнитного гистерезиса - замкнутая кривая (cdc`d`c), выражающая зависимость индукции в материале от амплитуды индукции внешнего поля при периодическом достаточно медленном изменении последнего (рис. 62).

Петля гистерезиса характеризуется следующими величинами B s , B r , B c . B s - максимальное значение индукции материала при В 0s ; В r - остаточная индукция, равная значению индукции в материале при уменьшении индукции внешнего магнитного поля от B 0s до нуля; -В с и В с - коэрцитивная сила - величина, равная индукции внешнего магнитного поля, необходимого для изменения индукции в материале от остаточной до нуля.

Для каждого ферромагнетика существует такая температура (точка Кюри (Ж. Кюри, 1859-1906), выше которой ферромагнетик утрачивает свои ферромагнитные свойства.

Существует два способа приведения намагниченного ферромагнетика в размагниченное состояние: а) нагреть выше точки Кюри и охладить; б) намагничивать материал переменным магнитным полем с медленно убывающей амплитудой.

Ферромагнетики, обладающие малой остаточной индукцией и коэрцитивной силой, называются магнитомягкими. Они находят применение в устройствах, где ферромагнетику приходится часто перемагничиваться (сердечники трансформаторов, генераторов и др.).

Магнитожесткие ферромагнетики, обладающие большой коэрцитивной силой, применяются для изготовления постоянных магнитов.

ОПРЕДЕЛЕНИЕ ИНДУКЦИИ МАГНИТНОГО ПОЛЯ НА ОСИ КРУГОВОГО ТОКА

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I ×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .

Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10-7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.

, (5)

где R – радиус кольца, х – расстояние от центра кольца до точки оси, в которой определяется магнитная индукция.

Каково определение, магнитное поле..??

Роджер

В современной физике «Магнитное поле» рассматривается как одно из силовых полей, приводящее к действию магнитной силы на движущиеся электрические заряды. Магнитное поле создается движущимися электрическими зарядами, как правило, электрическими токами, а также переменным электрическим полем. Существует гипотеза о возможности существования магнитных зарядов, что в принципе не запрещается электродинамикой, однако пока такие заряды (магнитные монополи) не обнаружены. В рамках электродинамики Максвелла магнитное поле оказалось тесно связанным с электрическим полем, что привело к возникновению единого понятия электромагнитное поле.
Полевая физика несколько меняет отношение к магнитному полю. Во-первых, она доказывает, что магнитных зарядов в принципе не может существовать. Во-вторых, магнитное поле оказывается не самостоятельным полем, равноправным электрическому, а одной из трех динамических поправок, возникающих при движении электрических зарядов. Поэтому полевая физика рассматривает в качестве фундаментального только электрическое поле, а магнитная сила становится одной из производных электрического взаимодействия.
P.S. профессор, конечно, лопух, но аппаратура при нем....

Мари

Магни́тное по́ле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты) . Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции \vec{\mathbf{B}}. В СИ магнитная индукция измеряется в Тесла (Тл) .
Физические свойства
Магнитное поле формируется изменяющимся во времени электрическим полем либо собственными магнитными моментами частиц. Кроме того магнитное поле может создаваться током заряженных частиц. В простых случаях оно может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера) . В более сложных ситуациях ищется как решение уравнений Максвелла
Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током) . Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.
Математическое представление
Векторная величина, образующая в пространстве поле с нулевой дивергенцией.

Определение магнитного поля. Его источники

Определение

Магнитное поле - одна из форм электромагнитного поля, которое действует только на движущиеся тела, которые имеют электрический заряд или намагниченные тела не зависимо от их движения.

Источниками этого поля являются постоянные электрические токи, движущиеся электрические заряды (телами и частицами), намагниченные тела, переменные электрические поля. Источниками постоянного магнитного поля являются постоянные токи.

Свойства магнитного поля

Во времена, когда изучение магнитных явлений только началось, исследователи особенное внимание уделяли тому, что существуют полюса в намагниченных брусках. В них магнитные свойства проявлялись особенно ярко. При этом четко было видно, что полюса магнита различны. Разноименные полюса притягивались, а одноименные отталкивались. Гильберт высказал идею о существовании «магнитных зарядов». Эти представление подержал и развил Кулон. На основе опытов Кулона силовой характеристикой магнитного поля стала сила, с которой магнитное поле действует на магнитный заряд, равный единице. Кулон же обратил внимание на существенные различия между явлениями в электричестве и магнетизме. Различие проявляется уже в том, что электрические заряды можно разделить и получить тела с избытком положительного или отрицательного заряда, тогда как невозможно разделить северный и южный полюса магнита и получить тело только с одним полюсом. Из невозможности деления магнита на исключительно «северный» или «южный» Кулон решил, что два эти вида зарядов неразрывны в каждой элементарной частице намагничивающего вещества. Так, было признано, что каждая частица вещества - атом, молекула или их группа -- есть нечто вроде микро магнита с двумя полюсами. Намагничивание тела при этом -- процесс ориентации его элементарных магнитов под влиянием внешнего магнитного поля (аналог поляризации диэлектриков).

Взаимодействие токов реализуется посредством магнитных полей. Эрстед обнаружил, что магнитное поле возбуждается током и оказывает ориентирующее действие на магнитную стрелку. У Эрстеда проводник с током был расположен над магнитной стрелкой, которая могла вращаться. Когда ток шел в проводнике, стрелка поворачивалась перпендикулярно проволоке. Смена направления тока вызывало переориентацию стрелки. Из опыта Эрстеда следовало, что магнитное поле имеет направление и должно характеризоваться векторной величиной. Эту величину назвали магнитной индукцией и обозначили: $\overrightarrow{B}.$ $\overrightarrow{B}$ аналогичен вектору напряженности для электрического поля ($\overrightarrow{E}$). Аналогом вектора смещения $\overrightarrow{D}\ $для магнитного поля стал вектор $\overrightarrow{H}$- называемый вектором напряжённости магнитного поля.

Магнитное поле воздействует только на движущийся электрический заряд. Магнитное поле рождается движущимися электрическими зарядами.

Магнитное поле движущегося заряда. Магнитное поле витка с током. Принцип суперпозиции

Магнитное поле электрического заряда, который движется с постоянной скоростью, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1\right),\]

где ${\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м}(в\ СИ)$ -- магнитная постоянная, $\overrightarrow{v}$ -- скорость движения заряда, $\overrightarrow{r}$ -- радиус вектор, определяющий местоположение заряда, q -- величина заряда, $\left[\overrightarrow{v}\overrightarrow{r}\right]$- векторное произведение.

Магнитная индукция элемента с током в системе СИ:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Направление вектора $\overrightarrow{dB}$ -- перпендикулярно к плоскости, в которой лежат $\overrightarrow{dl}$ и $\overrightarrow{r}$. Определяется правилом правого винта.

Для магнитного поля выполняется принцип суперпозиции :

\[\overrightarrow{B}=\sum{{\overrightarrow{B}}_i\left(3\right),}\]

где ${\overrightarrow{B}}_i$ -- отдельные поля, которые порождаются движущимися зарядами, $\overrightarrow{B}$ -- суммарная индукция магнитного поля.

Пример 1

Задание: Найдите отношение сил магнитного и кулоновского взаимодействия двух электронов, которые движутся с одинаковыми скоростями $v$ параллельно. Расстояние между частицами постоянно.

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\left(1.1\right).\]

Поле, которое создает второй движущийся электрон равно:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1.2\right).\]

Пусть расстояние между электронами равно $a=r\ (постоянно)$. Используем алгебраическое свойство векторного произведения (тождество Лагража ($\left[\overrightarrow{a}\left[\overrightarrow{b}\overrightarrow{c}\right]\right]=\overrightarrow{b}\left(\overrightarrow{a}\overrightarrow{c}\right)-\overrightarrow{c}\left(\overrightarrow{a}\overrightarrow{b}\right)$))

\[{\overrightarrow{F}}_m=\frac{{\mu }_0}{4\pi }\frac{q^2}{a^3}\left[\overrightarrow{v}\left[\overrightarrow{v}\overrightarrow{a}\right]\right]=\left(\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)-\overrightarrow{a}\left(\overrightarrow{v}\overrightarrow{v}\right)\right)=-\frac{{\mu }_0}{4\pi }\frac{q^2\overrightarrow{a}v^2}{a^3}\ ,\]

$\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)=0$, так как $\overrightarrow{v\bot }\overrightarrow{a}$.

Модуль силы $F_m=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2},\ $где $q=q_e=1,6\cdot 10^{-19}Кл$.

Модуль силы Кулона, которая действует на электрон, в поле равна:

Найдем отношение сил $\frac{F_m}{F_q}$:

\[\frac{F_m}{F_q}=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2}:\frac{q^2}{{4\pi {\varepsilon }_0a}^2}={\mu }_0{{\varepsilon }_0v}^2.\]

Ответ: $\frac{F_m}{F_q}={\mu }_0{{\varepsilon }_0v}^2.$

Пример 2

Задание: По витку с током в виде окружности радиуса R циркулирует постоянный ток силы I. Найдите магнитную индукцию в центре окружности.

Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу индукции элемента витка с током:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (2.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

От всех элементов тока будет образовываться магнитные поля, которые направлены по оси x. Это значит, что результирующий вектор индукции магнитного поля можно найти как сумму проекций отдельных векторов$\ \ \overrightarrow{dB}.$ Тогда по принципу суперпозиции полную индукцию магнитного поля можно получить, если перейти к интегралу:

Подставим (2.2) в (2.3), получим:

Ответ: $B$=$\frac{{\mu }_0}{2}\frac{I}{R}.$

Хорошо известно широкое применение магнитного поля в быту, на производстве и в научных исследованиях. Достаточно назвать такие устройства, как генераторы переменного тока, электродвигатели, реле, ускорители элементарных частиц и различные датчики. Рассмотрим подробнее, что собой представляет магнитное поле и как оно образуется.

Что такое магнитное поле - определение

Магнитное поле - это силовое поле, действующее на движущиеся заряженные частицы. Размер магнитного поля завит от скорости его изменения. Согласно этому признаку выделяют два типа магнитного поля: динамическое и гравитационное.

Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей их строения. Источниками динамического магнитного поля являются движущиеся электрические заряды или заряженные тела, проводники с током, а также намагниченные вещества.

Свойства магнитного поля

Великому французскому ученому Андре Амперу удалось выяснить два основополагающих свойства магнитного поля:

  1. Основное отличие магнитного поля от электрического и его основное свойство состоит в том, что оно носит относительный характер. Если вы возьмете заряженное тело, оставите его неподвижным в какой-либо системе отсчета и поместите рядом магнитную стрелку, то она будет, как обычно, указывать на север. То есть она не обнаружит никакого поля, кроме земного. Если же вы начнете перемещать это заряженное тело относительно стрелки, то она начнет поворачиваться - это говорит о том, что при движении заряженного тела возникает еще и магнитное поле, кроме электрического. Таким образом, магнитное поле появляется тогда и только тогда, когда есть движущийся заряд.
  2. Магнитное поле действует на другой электрический ток. Так, обнаружить его можно, проследив движение заряженных частиц, - в магнитном поле они будут отклоняться, проводники с током будут двигаться, рамка с током поворачиваться, намагниченные вещества смещаться. Здесь следует вспомнить магнитную стрелку компаса, обычно окрашенную в синий цвет, - ведь это просто кусочек намагниченного железа. Он всегда ориентируется на север, потому что Земля обладает магнитным полем. Вся наша планета является огромным магнитом: на Северном полюсе находится южный магнитный пояс, а на Южном географическом полюсе находится северный магнитный полюс.

Кроме этого, к свойствам магнитного поля относят следующие характеристики:

  1. Сила магнитного поля описывается магнитной индукцией - это векторная величина, определяющая, с какой силой магнитное поле влияет на движущиеся заряды.
  2. Магнитное поле может быть постоянного и переменного типа. Первое порождается не изменяющимся во времени электрическим полем, индукция такого поля также неизменна. Второе чаще всего генерируется при помощи индукторов, питающихся переменным током.
  3. Магнитное поле не может быть воспринято органами чувств человека и фиксируется только специальными датчиками.

Магнитное поле – это материальная среда, через которую осуществляется взаимодействие между проводниками с током или движущимися зарядами.

Свойства магнитного поля :

Характеристики магнитного поля :

Для исследования магнитного поля используют пробный контур с током. Он имеет малые размеры, и ток в нём много меньше тока в проводнике, создающем магнитное поле. На противоположные стороны контура с током со стороны магнитного поля действуют силы, равные по величине, но направленные в противоположные стороны, так как направление силы зависит от направления тока. Точки приложения этих сил не лежат на одной прямой. Такие силы называют парой сил . В результате действия пары сил контур не может двигаться поступательно, он поворачивается вокруг своей оси. Вращающее действие характеризуетсямоментом сил .

, гдеl плечо пары сил (расстояние между точками приложения сил).

При увеличении тока в пробном контуре или площади контура пропорционально увеличится момент пары сил. Отношение максимального момента сил, действующего на контур с током, к величине силы тока в контуре и площади контура – есть величина постоянная для данной точки поля. Называется она магнитной индукцией .

, где
-магнитный момент контура с током.

Единица измерения магнитной индукции –Тесла [Тл].

Магнитный момент контура – векторная величина, направление которой зависит от направления тока в контуре и определяется поправилу правого винта : правую руку сжать в кулак, четыре пальца направить по направлению тока в контуре, тогда большой палец укажет направление вектора магнитного момента. Вектор магнитного момента всегда перпендикулярен плоскости контура.

За направление вектора магнитной индукции принимают направление вектора магнитного момента контура, ориентированного в магнитном поле.

Линия магнитной индукции – линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции. Линии магнитной индукции всегда замкнуты, никогда не пересекаются.Линии магнитной индукции прямого проводника с током имеют вид окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление линий магнитной индукции определяют по правилу правого винта.Линии магнитной индукции кругового тока (витка с током) также имеют вид окружностей. Каждый элемент витка длиной
можно представить как прямолинейный проводник, который создаёт своё магнитное поле. Для магнитных полей выполняется принцип суперпозиции (независимого сложения). Суммарный вектор магнитной индукции кругового тока определяется как результат сложения этих полей в центре витка по правилу правого винта.

Если величина и направление вектора магнитной индукции одинаковы в каждой точке пространства, то магнитное поле называют однородным . Если величина и направление вектора магнитной индукции в каждой точке не изменяются с течением времени, то такое поле называютпостоянным.

Величина магнитной индукции в любой точке поля прямо пропорциональна силе тока в проводнике, создающем поле, обратно пропорциональна расстоянию от проводника до данной точки поля, зависит от свойств среды и формы проводника, создающего поле.

, где
Н/А 2 ; Гн/м– магнитная постоянная вакуума ,

-относительная магнитная проницаемость среды ,

-абсолютная магнитная проницаемость среды .

В зависимости от величины магнитной проницаемости все вещества разделяют на три класса:


При увеличении абсолютной проницаемости среды увеличивается и магнитная индукция в данной точке поля. Отношение магнитной индукции к абсолютной магнитной проницаемости среды – величина постоянная для данной точки поли, е называют напряжённостью.

.

Векторы напряжённости и магнитной индукции совпадают по направлению. Напряжённость магнитного поля не зависит от свойств среды.

Сила Ампера – сила, с которой магнитное поле действует на проводник с током.

Гдеl – длина проводника,- угол между вектором магнитной индукции и направлением тока.

Направление силы Ампера определяют по правилу левой руки : левую руку располагают так, чтобы составляющая вектора магнитной индукции, перпендикулярная проводнику, входила в ладонь, четыре вытянутых пальца направить по току, тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Результат действия силы Ампера – движение проводника в данном направлении.

Если= 90 0 , тоF=max, если= 0 0 , тоF= 0.

Сила Лоренца – сила действия магнитного поля на движущийся заряд.

, гдеq– заряд,v– скорость его движения,- угол между векторами напряжённости и скорости.

Сила Лоренца всегда перпендикулярна векторам магнитной индукции и скорости. Направление определяют по правилу левой руки (пальцы – по движению положительного заряда). Если направление скорости частицы перпендикулярно линиям магнитной индукции однородного магнитного поля, то частица движется по окружности без изменения кинетической энергии.

Так как направление силы Лоренца зависит от знака заряда, то её используют для разделения зарядов.

Магнитный поток – величина, равная числу линий магнитной индукции, которые проходят через любую площадку, расположенную перпендикулярно линиям магнитной индукции.

, где- угол между магнитной индукцией и нормалью (перпендикуляром) к площадиS.

Единица измерения – Вебер [Вб].

Способы измерения магнитного потока:

    Изменение ориентации площадки в магнитном поле (изменение угла)

    Изменение площади контура, помещённого в магнитное поле

    Изменение силы тока, создающего магнитное поле

    Изменение расстояния контура от источника магнитного поля

    Изменение магнитных свойств среды.

Фарадей регистрировал электрический ток в контуре, не содержащим источника, но находившемся рядом с другим контуром, содержащим источник. Причём ток в первом контуре возникал в следующих случаях: при любом изменении тока в контуре А, при относительном перемещении контуров, при внесении в контур А железного стержня, при движении относительно контура Б постоянного магнита. Направленное движение свободных зарядов (ток) возникает только в электрическом поле. Значит, изменяющееся магнитное поле порождает электрическое поле, которое и приводит в движение свободные заряды проводника. Это электрическое поле называютиндуцированным иливихревым .

Отличия вихревого электрического поля от электростатического:

    Источник вихревого поля – изменяющееся магнитное поле.

    Линии напряжённости вихревого поля замкнуты.

    Работа, совершаемая этим полем по перемещению заряда по замкнутому контуру не равна нулю.

    Энергетической характеристикой вихревого поля является не потенциал, а ЭДС индукции – величина, равная работе сторонних сил (сил не электростатического происхождения) по перемещению единицы заряда по замкнутому контуру.

.Измеряется в Вольтах [В].

Вихревое электрическое поле возникает при любом изменении магнитного поля, независимо от того, есть ли проводящий замкнутый контур или его нет. Контур только позволяет обнаружить вихревое электрическое поле.

Электромагнитная индукция – это возникновение ЭДС индукции в замкнутом контуре при любом изменении магнитного потока через его поверхность.

ЭДС индукции в замкнутом контуре порождает индукционный ток.

.

Направление индукционного тока определяют поправилу Ленца : индукционный ток имеет такое направление, что созданное им магнитное поле противодействует любому изменению магнитного потока, породившего этот ток.

Закон Фарадея для электромагнитной индукции : ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Токи Фуко – вихревые индукционные токи, возникающие в проводниках больших размеров, помещённых в изменяющееся магнитное поле. Сопротивление такового проводника мало, так как он имеет большое сечениеS, поэтому токи Фуко могут быть большими по величине, в результате чего проводник нагревается.

Самоиндукция – это возникновение ЭДС индукции в проводнике при изменении силы тока в нём.

Проводник с током создаёт магнитное поле. Магнитная индукция зависит от силы тока, следовательно собственный магнитный поток тоже зависит от силы тока.

, гдеL– коэффициент пропорциональности,индуктивность .

Единица измерения индуктивности – Генри [Гн].

Индуктивность проводника зависит от его размеров, формы и магнитной проницаемости среды.

Индуктивность увеличивается при увеличении длины проводника, индуктивность витка больше индуктивности прямого проводника такой же длины, индуктивность катушки (проводника с большим числом витков) больше индуктивности одного витка, индуктивность катушки увеличивается, если в неё вставить железный стержень.

Закон Фарадея для самоиндукции :
.

ЭДС самоиндукции прямо пропорциональна скорости изменения тока.

ЭДС самоиндукции порождает ток самоиндукции, который всегда препятствует любому изменению тока в цепи, то есть, если ток увеличивается, ток самоиндукции направлен в противоположную сторону, при уменьшении тока в цепи, ток самоиндукции направлен в ту же сторону. Чем больше индуктивность катушки, тем больше ЭДС самоиндукции возникает в ней.

Энергия магнитного поля равна работе, которую совершает ток для преодоления ЭДС самоиндукции за время, пока ток возрастает от нуля до максимального значения.

.

Электромагнитные колебания – это периодические изменения заряда, силы тока и всех характеристик электрического и магнитного полей.

Электрическая колебательная система (колебательный контур) состоит из конденсатора и катушки индуктивности.

Условия возникновения колебаний :

    Систему надо вывести из состояния равновесия, для этого сообщают заряд конденсатору. Энергия электрического поля заряженного конденсатора:

.

    Система должна возвращаться в состояние равновесия. Под действием электрического поля заряд переходит с одной пластины конденсатора на другую, то есть в цепи возникает электрический ток, которые идёт по катушке. При увеличении тока в катушке индуктивности возникает ЭДС самоиндукции, ток самоиндукции направлен в противоположную сторону. Когда ток в катушке уменьшается, ток самоиндукции направлен в ту же сторону. Таким образом, ток самоиндукции стремиться возвратить систему к состоянию равновесия.

    Электрическое сопротивление цепи должно быть малым.

Идеальный колебательный контур не имеет сопротивления. Колебания в нём называютсвободными.

Для любой электрической цепи выполняется закон Ома, согласно которому ЭДС, действующая в контуре, равна сумме напряжений на всех участках цепи. В колебательном контуре источника тока нет, но в катушке индуктивности возникает ЭДС самоиндукции, которая равна напряжению на конденсаторе.

Вывод: заряд конденсатора изменяется по гармоническому закону .

Напряжение на конденсаторе :
.

Сила тока в контуре :
.

Величина
- амплитуда силы тока.

Отличие от заряда на
.

Период свободных колебаний в контуре :

Энергия электрического поля конденсатора :

Энергия магнитного поля катушки :

Энергии электрического и магнитного полей изменяются по гармоническому закону, но фазы их колебаний разные: когда энергия электрического поля максимальна, энергия магнитного поля равна нулю.

Полная энергия колебательной системы :
.

В идеальном контуре полная энергия не изменяется.

В процессе колебаний энергия электрического поля полностью превращается в энергию магнитного поля и наоборот. Значит энергия в любой момент времени равна или максимальной энергии электрического поля, или максимальной энергии магнитного поля.

Реальный колебательный контур содержит сопротивление. Колебания в нём называютзатухающими.

Закон Ома примет вид:

При условии что затухание мало (квадрат собственной частоты колебаний много больше квадрата коэффициента затухания) логарифмический декремент затухания:

При сильном затухании (квадрат собственной частоты колебаний меньше квадрата коэффициента колебаний):




Это уравнение описывает процесс разрядки конденсатора на резистор. При отсутствии индуктивности колебаний не возникнет. По такому закону изменяется и напряжение на обкладках конденсатора.

Полная энергия в реальном контуре уменьшается, так как на сопротивлениеRпри прохождении тока выделяется теплота.

Переходный процесс – процесс, возникающий в электрических цепях при переходе от одного режима работы к другому. Оценивается временем (), в течение которого параметр, характеризующий переходный процесс изменится в е раз.


Для контура с конденсатором и резистором :
.

Теория Максвелла об электромагнитном поле :

1 положение:

Всякое переменное электрическое поле порождает вихревое магнитное. Переменное электрическое поле было названо Максвеллом током смещения, так как оно подобно обычному току вызывает магнитное поле.

Для обнаружения тока смещения рассматривают прохождение тока по системе, в которую включён конденсатор с диэлектриком.

Плотность тока смещения :
. Плотность тока направлена в сторону изменения напряжённости.

Первое уравнение Максвелла :
- вихревое магнитное поле порождается как токами проводимости (движущимися электрическими зарядами) так и токами смещения (переменным электрическим полем Е).

2 положение:

Всякое переменное магнитное поле порождает вихревое электрическое поле – основной закон электромагнитной индукции.

Второе уравнение Максвелла :
- связывает скорость изменения магнитного потока сквозь любую поверхность и циркуляцию вектора напряжённости электрического поля, возникающего при этом.

Любой проводник с током создаёт в пространстве магнитное поле . Если ток постоянный (не изменяется с течением времени), то и связанное с ним магнитное поле тоже постоянное. Изменяющийся ток создаёт изменяющиеся магнитное поле. Внутри проводника с током существует электрическое поле. Следовательно, изменяющееся электрическое поле создаёт изменяющееся магнитное поле.

Магнитное поле вихревое, так как линии магнитной индукции всегда замкнуты. Величина напряженности магнитного поля Н пропорциональна скорости изменения напряжённости электрического поля . Направление вектора напряжённости магнитного полясвязано с изменением напряжённости электрического поляправилом правого винта: правую руку сжать в кулак, большой палец направить в сторону изменения напряжённости электрического поля, тогда согнутые 4 пальца укажут направление линий напряжённости магнитного поля.

Любое изменяющееся магнитное поле создаёт вихревое электрическое поле , линии напряжённости которого замкнуты и расположены в плоскости, перпендикулярной напряжённости магнитного поля.

Величина напряжённости Е вихревого электрического поля зависит от скорости изменения магнитного поля . Направление вектора Е связано с направлением изменения магнитного пол Н правилом левого винта: левую руку сжать в кулак, большой палец направить в сторону изменения магнитного поля, согнутые четыре пальца укажут направление линий напряжённости вихревого электрического поля.

Совокупность связанных друг с другом вихревых электрического и магнитного полей представляют электромагнитное поле . Электромагнитное поле не остаётся в месте зарождения, а распространяется в пространстве в виде поперечной электромагнитной волны.

Электромагнитная волна – это распространение в пространстве связанных друг с другом вихревых электрического и магнитного полей.

Условие возникновения электромагнитной волны – движение заряда с ускорением.

Уравнение электромагнитной волны :

- циклическая частота электромагнитных колебаний

t– время от начала колебаний

l– расстояние от источника волны до данной точки пространства

- скорость распространения волны

Время движения волны от источника до данной точки.

Векторы Е и Н в электромагнитной волне перпендикулярны друг другу и скорости распространения волны.

Источник электромагнитных волн – проводники, по которым протекают быстропеременные токи (макроизлучатели), а также возбуждённые атомы и молекулы (микроизлучатели). Чем больше частота колебаний, тем лучше излучаются в пространстве электромагнитные волны.

Свойства электромагнитных волн:

    Все электромагнитные волны – поперечные

    В однородной среде электромагнитные волны распространяются с постоянной скоростью , которая зависит от свойств среды:

- относительная диэлектрическая проницаемость среды

- диэлектрическая постоянная вакуума,
Ф/м, Кл 2 /нм 2

- относительная магнитная проницаемость среды

- магнитная постоянная вакуума,
Н/А 2 ; Гн/м

    Электромагнитные волны отражаются от препятствий, поглощаются, рассеиваются, преломляются, поляризуются, дифрагируют, интерферируют .

    Объёмная плотность энергии электромагнитного поля складывается из объёмных плотностей энергии электрического и магнитного полей:

    Плотность потока энергии волн – интенсивность волны :

-вектор Умова-Пойнтинга .

Все электромагнитные волны расположены в ряд по частотам или длинам волн (
). Этот ряд –шкала электромагнитных волн .

    Низкочастотные колебания . 0 – 10 4 Гц. Получают в генераторах. Они плохо излучаются

    Радиоволны . 10 4 – 10 13 Гц. Излучаются твёрдыми проводниками, по которым проходят быстропеременные токи.

    Инфракрасное излучение – волны, излучаемые всеми телами при температуре свыше 0 К, благодаря внутриатомным и внутри молекулярным процессам.

    Видимый свет – волны, оказывающие действие на глаз, вызывая зрительное ощущение. 380-760 нм

    Ультрафиолетовое излучение . 10 – 380 нм. Видимый свет и УФ возникают при изменении движения электронов внешних оболочек атома.

    Рентгеновское излучение . 80 – 10 -5 нм. Возникает при изменении движения электронов внутренних оболочек атома.

    Гамма-излучение . Возникает при распаде ядер атомов.