Главная · Гастрит · Магнитно-резонансная спектроскопия. Лучи магнитно-резонансная спектроскопия Магнито резонансная спектроскопия

Магнитно-резонансная спектроскопия. Лучи магнитно-резонансная спектроскопия Магнито резонансная спектроскопия

Магнитно-резонансная спектроскопия (MP-спектроскопия) позволяет неинвазивно получить информацию о метаболизме мозга. Протонная 1H-МР-спектроскопия основана на «химическом сдвиге» - изменении резонансной частоты протонов, входящих в состав различных химических соединений. Этот термин ввел N. Ramsey в 1951 г., чтобы обозначить различия между частотами отдельных спектральных пиков. Единица измерения «химического сдвига» - миллионная доля (ррт). Приводим основные метаболиты и соответствующие им значения химического сдвига, пики которых определяются in vivo в протонном МР-спектре:

  • NAA - N-ацетиласпартат (2,0 ррт);
  • Cho - холин (3,2 ррт);
  • Сr - креатин (3,03 и 3,94 ррт);
  • ml - миоинозитол (3,56 ррт);
  • Glx - глутамат и глутамин (2,1-2,5 ррт);
  • Lac - лактат (1,32 ррт);
  • Lip - липидный комплекс (0,8-1,2 ррт).

В настоящее время в протонной MP-спектроскопии используют два основных метода - одновоксельную и мультивоксельную (Chemical shift imaging) MP-спектроскопию - единовременное определение спектров от нескольких участков головного мозга. В практику сейчас стала также входить мультиядерная MP-спектроскопия на основе МР-сигнала ядер фосфора, углерода и некоторых других соединений.

При одновоксельной 1H-МР-спектроскопии для анализа выбирают только один участок (воксел) мозга. Анализируя состав частот в регистрируемом от этого воксела спектра, получают распределение определенных метаболитов по шкале химического сдвига (ррт). Соотношение между пиками метаболитов в спектре, уменьшение или увеличение высоты отдельных пиков спектра позволяют неинвазивно оценивать биохимические процессы, происходящие в тканях.

При мультивоксельной MP-спектроскопии получают MP-спектры для нескольких вокселов сразу, и можно сравнить спектры отдельных участков в зоне исследования. Обработка данных мультивоксельной MP-спектроскопии даёт возможность построить параметрическую карту среза, на которой концентрация определённого метаболита отмечена цветом, и визуализировать распределение метаболитов в срезе, т.е. получить изображение, взвешенное по химическому сдвигу.

Клиническое применение МР-спектроскопии. MP-спектроскопию в настоящее время довольно широко используют для оценки различных объёмных образований головного мозга. Данные MP-спектроскопии не позволяют с уверенностью предсказать гистологический тип новообразования, тем не менее большинство исследователей сходятся во мнении, что опухолевые процессы в целом характеризуются низким соотношением NAA/Cr, увеличением соотношения Cho/Cr и, в некоторых случаях, появлением пика лактата. В большинстве МР-исследований протонную спектроскопию применяли в дифференциальной диагностике астроцитом, эпендимом и примитивных нейроэпителиальных опухолей, предположительно определяя тип опухолевой ткани.

В клинической практике важно использовать MP-спектроскопию в послеоперационном периоде для диагностики продолженного роста новообразования, рецидива опухоли либо лучевого некроза. В сложных случаях 1Н-МР-спектроскопия становится полезным дополнительным методом в дифференциальной диагностике наряду с получением перфузионно-взвешенных изображений. В спектре лучевого некроза характерный признак - наличие так называемого мёртвого пика, широкого лактат-липидного комплекса в диапазоне 0,5-1,8 ррт на фоне полной редукции пиков остальных метаболитов.

Следующий аспект использования МР-спектроскопии - разграничение впервые выявленных первичных и вторичных поражений, дифференцировка их с инфекционными и демиелинизующими процессами. Наиболее показательны результаты диагностики абсцессов головного мозга на основе применения диффузионно-взвешенных изображений. В спектре абсцесса на фоне отсутствия пиков основных метаболитов отмечено появление пика липид-лактатного комплекса и пиков, специфичных для содержимого абсцесса, таких как ацетат и сукцинат (продукты анаэробного гликолиза бактерий), аминокислоты валин и лейцин (результат протеолиза).

В литературе также очень широко исследуют информативность МР-спектроскопии при эпилепсии, при оценке метаболических нарушений и дегенеративных поражений белого вещества головного мозга у детей, при черепно-мозговой травме, ишемии мозга и других заболеваниях.

Протонная магнитно-резонансная спектроскопия (ПМРС) – один из наиболее молодых и быстро развивающихся методов лучевого исследования головного мозга, позволяющих определять содержание основных метаболитов (холин, N-ацетиласпартат, креатин, глютамат/глутамин, лактат) в интересующих участках органа и их соотношение.

История и этимология

МРС впервые использовали при исследовании эритроцитов в 1973 году Мун и Ричардс, а в 1974 году при помощи МРС Хаулт исследовал бедренную мышцу мыши.

Пики .

Лактат: резонирует на 1,3 ppm

Липиды: резонирует на 1,3 ppm

Аланин: резонирует на уровне 1,48 ppm

N-ацетиласпартат (NАА): резонирует на 2.0 ppm

Глутамин/глутамат: резонанс на 2.2-2.4 ppm

ГАМК: резонирует на 2.2-2.4 ppm

2-гидроксиглутарат: резонирует на уровне 2,25 ppm

Цитрат резонирует 2,6 ppm

Креатин: резонирует на 3.0 ppm

Холин: резонирует на 3.2 ppm

Мио-инозитол: резонанс на 3.5 ppm

ppm — pars per million

Как лучше запомнить?

Вспомнить шоколадку с названием My ChoCrNaaLa

My: Myo-inositol 3.5 — Мио-инозитол

Cho: Choline 3.2 — Холин

Cr: Creatine 3.0 — Креатин

Naa: Naa 2.0 — N-ацетиласпарта

L: Lactate 1.3 — Лактат

Патология

Глиома

МРС помогает предсказать степень дифференцировки. Чем выше степень дифференцировки, тем ниже пик N-ацетиласпартата и креатина, но выше пики холина, лактата и липидов.

Не-глиальные опухоли

Незначительные изменения пика NAA.

Лучевая терапия

Дифференциация изменений головного мозга на фоне лучевой терапии от опухоли всегда проблематична, но при рецидиве опухоли пик холина чаще повышен в то время, как после лучевой терапии пик NAA, холина и креатина будет низким.

Ишемия и инфаркт

Пик лактата будет повышаться, как только клетки головного мозга переходят на анаэробный метаболизм. Пик липидов и всех остальных пиков будет снижаться.

Инфекция

Пик NAA отсутствует при всех патологических процессах, разрушающих ткань головного мозга. При абсцессе пик лактата, аланина, ацетата повышен. Пик холина низкий или отсутствует при токсоплазмозе, а при лимфоме повышен, данный показатель используют для отличия одного патологического процесса от другого.

Заболевания белого вещества мозга (лейкодистрофии)

Прогрессирующая мультифокальная лейкоэнцефалопатия повышение Мио-инозитол. Болезнь Канавана повышение NAA.

Печеночная лейкоэнцефалопатия

При печеночной лейкоэнцефалопатии снижение пика миоинозитола и в меньшей степени холина. Глутамин увеличивается.

Митохондриальные заболевания.

Синдром Лея: повышение пика холина, снижение NAA и реже повышение пика лактата.

Примеры

РИС. 1.

Астроцитома низкой степени злокачественности в левой лобной доле. Зона повышенного по Т2 ВИ сигнала без чётких контуров в левой лобной доле. 2D мультивоксельная МР-спектроскопия. В спектре патологического участка определяется высокий пик холина, снижение пика N-ацетиласпартата и наличие пика лактата. На цветной карте отра- жается распределение соотношения Cho/NAA. В патологической зоне отмечается повышение индекса Cho/NAА выше 1.0 (красный цвет).

РИС. 2.

Глиобластома. 2D мультивоксельная МР-спектроскопия.

А. Цветная карта распределения соотношения Cho/NAA. Отмечается повышение индекса Cho/NAA выше 1.80 в зоне опухоли (красный цвет). Метаболические изменения распространяются далеко за пределы патологической зоны. Б. Цветная карта распределения NAA. Отмечается сни- жение содержания NAA выше в зоне опухоли (синий цвет).

РИС. 3.

Астроцитома низкой степени злокачественности.

А. 2D мультивоксельная МР-спектроскопия, карта распределения соотношения Cho/Cr. Отмечается повышение индекса Cho/Cr в зоне опухоли выше 1.0. Б. Т2 взвешенные изображения. В левой теменной доле зона повышенного МР-сигнала без чётких контуров. В. Отсутствие контрастного усиления на Т1 ВИ. Г. ADC карта. Д. Диффузионно-взвешенные изображения.

РИС. 4.

Солитарный метастаз.

Объёмное образование с распадом в центре, солидный компонент интенсивно накапливает контрастное вещество. В спектре опухоли определяется повышение пика холина, отсутствие пика N-ацетиласпартата, невысокий пик лактата. На 2D мультивоксельной карте распределения холина отмечаются высокие интегральные показатели этого метаболита.

РИС. 5.

Состояние после перенесенной длительной комы.

Диффузное снижение N-ацетиласпартата с обеих сторон.

РИС. 6.

Эписиндром неопухолевой этиологии. Фокальная кортикальная дисплазия. А, Б, В, Г. Протонная МР-спектроскопия. Карты распределения Cho/Cr, Cho, NAA, Lac. Отмечается снижение N-ацетиласпартата при нормальных показателях Cho/Cr, Cho, Lac.

Д, Е, Ж. Повышение МР-сигнала по Т2 ВИ от медиальных отделов правой височной кости. З, И. Метаболические изменения с обеих сторон.

РИС. 7.

Состояние после удаления астроцитомы . Признаки продолженного роста. А. Т2 взвешенные изображения. Б. Т2 FLAIR. В. Протонная МР-спектроскопия. Карта распределения NAA. Снижение содержания N-ацетиласпартата. Г. Карта распределения Cho/NAA. Повышение индекса Cho/NAA. Д. Карта распределения Cho/Cr. Повышение индекса Cho/Cr. Е. Протонная МР спектроскопия. Увеличение пика холина, сни- жение пика N-ацетиласпартата. Ж. Т2 ВИ корональная проекция. З. Т1 ВИ сагиттальная проекция.

РИС. 8.

Состояние после удаления астроцитомы правой височной доли. А. Т2 взвешенные изменения. Кзади от послеоперационной кисты име- ется подозрительный на рецидив участок. Б. Протонная МР-спектроскопия. Снижение пиков холина, креатина и N-ацетиласпартата. В, Г, Д, Е. Карты распределения метаболитов: Cho, NAA, Cho/Cr Lac соответственно. Снижение содержания Cho, NAA. Lac и индекс Cho/Cr в пределах нормы.

Для справки:

PPM — это pars per million, т.е. миллионная доля от резонансной частоты данного ядра (например для водорода в поле с магнитной индукцией в 1,5 Тл размерность 1 ppm будет равна 63.87 Герц, при 3 тесла уже 127,74 Гц. За 0 ppm принята частота тетраметилсилана, что пришло из аналитической химии.

Источник

  • Radiopaedia
  • ПРИМЕНЕНИЕ ПРОТОННОЙ МАГНИТНО-РЕЗОНАНСНОЙ СПЕКТРОСКОПИИ В ЦЕРЕБРАЛЬНОЙ НЕЙРООНКОЛОГИИ — И.А. Лобанов1, И.А. Медяник2, А.П. Фраерман2, Б.Е. Шахов3, Л.Я. Кравец2, Д.Н. Никитин2,

Уникальность МР спектроскопии головного мозга – возможность изучать метаболизм здоровых и патологических клеток. Основа функционирования метода – регистрация спектра от ядер атомов водорода (протонов), входящих в состав разных химических соединений.

МР спектроскопия головного мозга – что это такое

Для изучения биохимического обмена мозговой ткани анализируются спектральные частоты соединений, концентрация и соотношение которых изменяется при патологических состояниях.

При оценке, сколько стоит мр спектроскопия головного мозга и где сделать в СПб и Москве, следует учитывать задачи исследования, влияющие на выбор режима анализа спектрального ряда:

  1. Лактата;
  2. Глутамина (глутамата);
  3. Ацетиласпартата;
  4. Креатинина;
  5. Холина;
  6. Липидных комплексов;
  7. Миоинозитола.

Уникальное преимущество исследования при сравнении с другими МРТ аналогами – выявление патологического метаболизма в мозговой ткани до появления клинических симптомов болезни.

В зависимости от целей выделяют 2 вида МР-спектроскопии:

  1. Внутренних органов;
  2. Биологических жидкостей.

Первая разновидность назначается для анализа метаболизма белого вещества, вторая – для оценки состава спинномозговой жидкости.

Современное технологическое новшество – мультиядерная спектроскопия – выявляет концентрацию углерода, фосфора, некоторых других химических элементов одновременно от нескольких отделов мозга на основе спектрального графика. Подход позволяет сравнивать метаболизм противоположных центров, периферических участков опухоли.

Клинические цели МР-спектроскопии

Самое частое применение протонной спектроскопии – оценка особенностей новообразований мозга, дифференциальная диагностика разных типов опухолей. Обследование не выявляет гистологический тип образования, но достоверно верифицирует рак. Измененный метаболизм злокачественных клеток характеризуется уменьшением соотношения между ацетиласпартатом и креатинином, увеличением холина, лактата.

Эффективное использование МР спектроскопии головного мозга при эпилепсии обусловлено выявлением специфичных для заболевания метаболических расстройств. Определение биохимического спектра протонов используется для диагностики рассеянного склероза.

Часто применяется протонная спектроскопия в онкологической практике после оперативного вмешательства для ранней диагностики рецидива образования, метастазов, определения участков гибели белого вещества.

Еще одна цель назначения МР-H-спектроскопии – отличие вторичных и первичных патологических очагов, разграничение воспалительных и демиелинизирующих (протекающих с разрушением оболочек нервов) процессов.

При некоторых инфекционных заболеваниях метод выявляет внутримозговые абсцессы (ограниченные гнойные полости), характеризующиеся увеличением лактата, липидных комплексов, некоторых аминокислот (лейцин, валин), сукцината и ацетата.

Распространенные показания для МР-спектроскопии головного мозга:

  • Микроишемические нарушения без выраженной клиники;
  • Эпилептические расстройства;
  • Демиелинизирующие заболевания (рассеянный склероз, энцефаломиелит);
  • Воспалительные внутримозговые процессы;
  • Мелкие и крупные образования;
  • Нейродегенеративные состояния.

В заключение отметим, что изучение метаболических изменений мозга путем регистрации спектрального ряда протонов разных химических соединений – основа раннего выявления опухолей, диагностики заболеваний.

Рубрика: Диагностика в Германии

Это метод исследования, базирующийся на принципе классического магнитно-ядерного резонанса, но имеющий некоторые отличия. Если в магнитно-резонансных приборах используется свойство частиц поглощать и излучать электромагнитные волны, то целью спектроскопии является определение наличия и концентрации отдельных химических веществ . Метод магнитно-резонансной спектроскопии позволяет проводить измерения в живых тканях. Так, с помощью ядер водорода (Н 1) возможно определять количество N-ацетиласпартата в нейронах головного мозга или количество холина в клеточных мембранах. Молекулы фосфора Р 31 применяются, главным образом для изучения обмена веществ на клеточном уровне, а молекулы углерода С 13 - для отслеживания метаболизма глюкозы.

Первая установка для МР-спектроскопии сконструирована австрийским профессором Эвальдом Мозером с сотрудниками в 1990 году. В 1996 году выполнены первые исследования метаболизма глюкозы и жирных кислот в головном мозге, скелетных мышцах и печени здоровых испытуемых, а также пациентов с диабетом 1 и 2 типа. К настоящему времени также выполнены клинические исследования МР-спектроскопии сердца и предстательной железы .

В ПОМОЩЬ ОНКОЛОГУ

В последние годы метод получил широкое распространение в онкологии , так как позволяет определить накопление патологических веществ при различных онкологических заболеваниях.

Если ранее было осуществимо лишь исследование крупных органов и значительных изменений, то сейчас стало возможным исследование такого небольшого органа, как предстательная железа с разрешением до <0,5 см 3 . В здоровой ткани предстательной железы определяется в больших количествах цитрат, или лимонная кислота. При злокачественных новообразованиях количество цитрата уменьшается. Так как общее число клеток при онкологических заболеваниях увеличивается, то возрастает и количество холина, составной части клеточной оболочки. Концентрацию двух этих веществ как раз и позволяет измерить МР спектроскопия. Для получения трехмерного изображения и точной локализации опухоли весь орган делится на небольшие участки менее 0,5 см 3 , в каждом из которых определяется концентрация указанных веществ.

На рисунке показана разница в содержании различных метаболитов в нормальной ткани предстательной железы (А) и в ткани карциномы предстательной железы (Б). При этом Cholin - холин, Kreatin - креатин, а Citrat - cоли лимонной кислоты. В злокачественной ткани преобладает повышенная концентрация холина, но снижена концентрация цитрата. (Источник: Dr. Scheidler. Patienteninfo Prostata-Spektroskopie. Radiologische Zentrum München-Pasing, 2010 ).

Комбинация МРТ (определение морфологической структуры) с МР спектроскопией (выявление и определение концентрации химических соединений) позволяет охарактеризовать и спланировать лечение рака предстательной железы.

ПРИ РАКЕ ПРОСТАТЫ

Для такого исследования требуется МРТ-установка с высоким разрешением, а также две передающие капсулы: одна располагается поверхностно на передней брюшной стенке в области предстательной железы, а другая - ректально. Для обработки сигнала необходим также специальный прибор и программное обеспечение. Для получения достоверных результатов врачу требуется достаточный опыт работы с оборудованием. Только в 2010 году была завершена экспериментальная фаза применения МР- спектроскопии для диагностики рака предстательной железы. В Германии такое обследование можно пройти, например, в радиологическом центре Мюнхен-Пазинг. Врачами этого центра с 1993 года обследовано более 7000 пациентов. В сентябре 2003 года здесь был проведен первый в Германии курс для врачей по диагностике рака предстательной железы с помощью МР-спектроскопии.

В настоящее время «золотым стандартом» ранней диагностики рака предстательной железы является определение опухолевого маркера, простатспецифического антигена (ПСА). При повышении ПСА выполняется дальнейшая диагностика - поиск злокачественного новообразования или доброкачественных изменений (гиперплазии). Основным недостатком метода является низкая специфичность, то есть повышение ПСА и при других, например, воспалительных заболеваниях.

В случае повышения ПСА на помощь как раз может прийти такой метод как МР-спектроскопия. Особенно МР-спектроскопия показана пациентам с постоянно повышенным уровнем ПСА, но неподтвержденными с помощью гистологического исследования злокачественными изменениями предстательной железы.

ПРОЦЕДУРА

Как же выполняется исследование предстательной железы? Самым приятным фактом является отсутствие специальной подготовки пациента. Лишь незадолго до процедуры рекомендуется естественное опорожнение кишечника и мочевого пузыря. Контрастное средство в исследовании не применяется.

Противопоказанием к исследованию является наличие искусственного водителя ритма. При наличии искусственных клапанов сердца или протезов внутреннего уха необходимо обязательно информировать врача, имея при себе описание (аннотацию или паспорт) данных протезов. Исследование проводится в закрытом помещении, в специальной продолговатой кабине. Если имеет место боязнь закрытых пространств - клаустрофобия, то перед исследованием пациент получает успокаивающее средство. Исследование длится около часа, в положении лежа на спине.

Метод МР-спектроскопии является очень многообещающим. В комбинации с обычной магнитно-резонансной томографией правильный диагноз устанавливается в 80-85% случаев. Ошибки происходят в тех случаях, когда опухолевая ткань значительно не отличается от нормальной по степени зрелости, и количество холина в ней приближено к нормальной ткани. Редко наблюдаются случаи, когда клетки опухоли рассеяны по всей предстательной железе, а не сконцентрированы на определенном участке, тогда в диагностике поможет исследование ткани под микроскопом.

В СПЕКТРЕ НАУКИ

В Германии признанным международным центром МР-спектроскопии является Франкфурт-на-Майне, где располагаются Центр биомолекулярной МР-спектроскопии, Институт Макса Планка и исследовательские группы Университета Гете. С помощью МР-спектроскопии здесь изучаются внутриклеточные белки, их изменения под воздействием различных медикаментов и температурных колебаний. В берлинской клинике Шарите и Рейнском университете Фридриха Вильгельма в Бонне активно изучается применение МР- спектроскопии для диагностики рассеянного склероза. Показано, что в неповрежденных клетках головного мозга содержится значительное количество N-ацетил-аспартата, снижение которого может указывать на развитие заболевания.

Др. София Ротэрмель



Остеоденситометрия: прочны ли ваши кости? Точный диагноз благодаря точной локализации опухоли и ее метастазов: новая диагностика с помощью высокочувствительного онкомаркера при раке простаты. Компьютерная томография в помощь ортопеду

Остеоденситометрия, или просто денситометрия - это несложный и безболезненный метод измерения плотности костной ткани. Конечно, необязательно это делать каждому, пусть и в целях профилактики...

Людгер А., в профилактических целях регулярно обследовался по подозрению на рак простаты. Однако три биопсии не подтвердили наличие опухоли. Для окончательной ясности 75-летний пациент...

все это и многое другое вы найдете на страницах журнала в разделе "Информация для врачей".
Общественный транспорт Германии

Прилетая на самолете на лечение в Германию, вы из аэропорта можете относительно недорого добраться до места назначения по железной дороге. Страна обладает разветвленной сетью железных дорог. Концерн «Немецкие железные дороги» - Deutsche Bahn (DB) предлагает несколько видов поездов, отличающихся не только внешним видом, но и, в первую очередь, скоростью и стоимостью проезда. ICE (Интер Сити Экспресс) и IC (Интер Сити) - это самые быстрые и комфортабельные экспрессы, на которых можно добраться не только до крупных городов Германии, но и 6-ти соседних стран: Австрии, Бельгии, Дании, Нидерландов, Франции и Швейцарии.

Магнитно-резонансная томография (МРТ) — метод получения изображений внутренних органов человека, основанный на явлении ядерно-магнитного резонанса (ЯМР).

Физика метода

Человеческое тело содержит большое количество протонов — ядер атома водорода: в составе воды, в каждой молекуле органического вещества — белках, жирах, углеводах, мелких молекулах... Протон же - один из немногих атомов, у которого есть собственный магнитный момент или вектор направления. При отсутствии внешнего мощного магнитного поля магнитные моменты протонов ориентированы случайным образом, то есть стрелки векторов направлены в разные стороны.

Если же поместить атом в сильное постоянное магнитном поле все меняется. Магнитный момент ядер водорода ориентируется либо сонаправленно направлению магнитного поля, либо в противоположном направлении. Во втором случае энергия состояния будет чуть выше. Если же теперь воздействовать на этим атомы электромагнитым излучением резонансной частоте (к счастью для нас, это частота радиоволн, абсолютно безопасная для человека), то часть протонов поменяют свой магнитный момент на противоположный. А после отключения внешнего магнитного поля они вернутся в исходное положение, выделяя энергию в виде электромагнитного излучения, которое и регистрируется томографом.

Ориентация магнитных моментов ядер а ) в отсутствии б ) при наличии внешнего магнитного поля

Эффект ЯМР можно представить не только на протонах, но и на любых изотопах, имеющих ненулевой спин (то есть вращающихся в определенном направлении), чья встречаемость в природе (или в организме человека) достаточно велика. К таким изотопам можно отнести 2 Н, 31 Р, 23 Na, 14 N, 13 C, 19 F и некоторые другие.

История МРТ

В 1937 году Изидор Раби , профессор Колумбийского университета изучил интересное явление, при котором атомные ядра образцов, помещённые в сильное магнитное поле, поглощали радиочастотную энергию. За это открытие он получил Нобелевскую премию по физике в 1944 году.

Позже две группы физиков из США, одна под руководством Феликса Блоха , другая — Эдварда М. Парселла , впервые получили сигналы ядерного магнитного резонанса от твёрдых тел. За это оба в 1952 также удостоились Нобелевской премии физике.

В 1989 Норман Фостер Рамсей получил Нобелевскую премию по химии за теорию химического сдвига, которую сформулировал в 1949 году. Суть теории в том, что ядро атома можно опознать по изменению резонансной частоты, а любую молекулярную систему может описать её спектр поглощения. Эта теория стала основой магнитно-резонансной спектроскопии. В период с 1950 по 1970 годы ЯМР использовался для химического и физического молекулярного анализа в спектроскопии.

В 1971 году физик Раймонд Дамадьян (США) открыл возможность применения ЯМР для обнаружение опухолей. Он продемонстрировал на крысах, что сигнал водорода от злокачественных тканей сильнее, чем от здоровых. Дамадьян и его команда потратили 7 лет на разработку и создание первого МР-сканера для медицинского отображения человеческого тела.

Доктор Дамадьян при попытке получить собственное МРТ изображение

В 1972 году химик Пол Кристиан Лотербур (США) сформулировал принципы отображения ядерного магнитного резонанса, предложив использовать переменные градиенты магнитного поля для получения двумерного изображения.

В 1975 г. Ричард Эрнст (Швейцария) предложил использовать в магнитно-резонансной томографии фазовое и частотное кодирование и Фурье-преобразования, метод, который используется в МРТ и в настоящее время. В 1991 году Ричард Эрнст удостоился Нобелевской премии по химии за достижения в области импульсной томографии.

В 1976 Питер Мэнсфилд (Великобритания) предложил эхо-планарное отображение (EPI) — самую скоростную методику, основанную на сверхбыстром переключении градиентов магнитного поля. Благодаря этому время получения изображения уменьшилось с нескольких часов до нескольких десятков минут. Именно Питер Мэнсфилд вместе с Полом Лотенбуром в 2003 году получил Нобелевскую премию по физиологии или медицине за изобретение метода магнитно-резонансной томографии. Кстати, любопытно, что с Лотенбуром над созданием метода МРТ работал правнук Альфреда Нобеля, Микаэль Нобель.

Итак, 3 июля 1977 , спустя почти 5 часов после начала первого теста, наконец, получили первое изображение среза человеческого тела на первом прототипе магнитного резонансного сканера.

Первое МРТ-изображение среза человеческого тела. Получено 3 июля 1977 года

Устройство томографа

МР-томограф состоит из следующих блоков: магнит, градиентные, шиммирующие и радиочастотные катушки, охлаждающая система, система приема, передачи и обработки данных, система экранирования (см. рис.)

Схема МР - томографа

Магнит — самая, собственно, важная и дорогая часть томографа, создающая сильное устойчивое магнитное поле. Магниты в МР-томографе бывают самые разные: постоянные, резистивные, сверхпроводящие и гибридные.

В томографе с постоянным магнитом поле создается между двумя полюсами, сделанными из ферромагнитных материалов (ферромагнетик — вещество, обладающее магнитными свойствами в отсутствии внешнего магнитного поля). Плюс такого томографа в том, что он не требует дополнительной электроэнергии или охлаждения. Однако создаваемое таким типом томографов поле не превышает по своей индукции 0,35 Тл (Тесла, Тл — единица измерения силы магнитного поля. Надо сказать, что и 0,35 Тл — это мощное магнитное поле, в 10000 раз мощнее магнитного поля Земли). Недостатки постоянных томографов — высокая стоимость непосредственно самого магнита и поддерживающих структур, а также проблемы с однородностью магнитного поля.

В резистивных магнитах поле создается пропусканием сильного электрического тока по проводу, намотанному на железный сердечник. Сила поля таких МРТ примерно чуть больше — 0,6 Тл. Но эти томографы нуждаются в хорошем охлаждении и в постоянном электропитании для поддержания однородности магнитного поля.

В гибридных системах для создания магнитного поля используются и проводящие ток катушки, и постоянно намагниченный материал.

Для создания полей свыше 0,5 Тл обычно необходимы сверхпроводящие магниты, которые очень надежны и дают однородные и стабильные во времени поля. В таком магните поле создается током в проводе из сверхпроводящего материала, не имеющего электрического сопротивления при температурах вблизи абсолютного нуля (-273,15°C). Сверхпроводник пропускает электрический ток без потерь. В МРТ обычно используется провод из ниобий-титанового сплава длиной в несколько километров, вложенный в медную матрицу. Охлаждается эта система жидким гелием. Более 90% производящихся сегодня МР-томографов составляют модели со сверхпроводящими магнитами.

Внутри магнита расположены градиентные катушки, предназначенные для создания небольших изменений главного магнитного поля. Приложенные в трех взаимно перпендикулярных направлениях, градиентные поля позволяют точно локализовать зону интереса в трехмерном пространстве.

Шиммирующая катушка — это катушка с малым током, создающая вспомогательные магнитные поля для компенсации неоднородности главного магнитного поля томографа из-за дефектов основного магнита или присутствия намагниченных объектов в поле исследований.

Радиочастотная (РЧ ) катушка представляет собой одну или несколько петель проводника, создающих магнитное поле, необходимое для поворота спинов на 90° или 180° и регистрирующих сигнал от спинов внутри тела.

Еще недавно клинической практике верхний предел напряженности магнитного поля составляет 2 Тл, однако сегодня на рынок выходят уже семитесловые томографы.

Типы МРТ

По виду конструкции МР-томографы могут быть открытые и закрытые. Первые МРТ-сканеры конструировались как длинные и узкие туннели. МРТ открытой конструкции имеют горизонтальные или вертикальные противостоящие магниты и имеют больше пространства вокруг пациента. Существуют системы для исследования пациентов в вертикальном положении.

МРТ-сканер с вертикальным положением пациента

МРТ-сканер открытого типа

МРТ -сканер закрытого типа

Диффузионно-тензорная МРТ. Этот метод определяет направление и тензор (силу) диффузии молекул воды в тканях: клетках, сосудах, нервных волокнах. Метод не требует использования контрастного вещества и поэтому абсолютно безопасен. На основе полученных в ходе томографии данных строят карты диффузии. Данный метод хорошо подходит для исследования ЦНС, позволяет хорошо визуализировать проводящие структуры мозга. Тензорную МРТ иногда называют трактографией.

Изображение проводящих путей мозга, получено с помощью диффузионно-тензорной МРТ

МР-ангиография. Метод визуализации кровеносных сосудов, основан на отличии сигнала движущихся протонов в крови от сигнала протонов окружающих неподвижных тканей.

МР-ангиография сосудов головы

Функциональная МРТ. Метод основан на регистрации кровообращения активно работающих участков мозга. Этому методу на портале будет посвящен отдельный материал.

МР-спектроскопия. Метод позволяет определить наличие определённых метаболитов (лактата, креатинина, N-ацетиласпартата и многих других) в тканях, органах и полостях, что позволяет делать выводы о наличии заболевания, его динамике.

Применение МРТ

МРТ позволяет увидеть любые внутренние органы человека, не нанося ему вреда. Высокая разрешающая способность, безопасность делают МРТ весьма популярным и перспективным методом исследования в клинической практике, несмотря на довольно высокую стоимость.

Помимо исследования больших объектов — человека, животных, для исследователей есть и другие способы использования магнитного резонанса. Например, МР-микроскопия. Для химиков, физиков и биологов МР-микроскопия возможно самый мощный инструмент изучения веществ на молекулярном уровне. Можно локализовать в 3D объеме магнитные ядра, позволяющие получать изображения и наблюдать объекты с разрешением, достигающим 10 -6 м.

ЯМР-микроскопия сегодня уже применяется для обнаружения микродефектов в различных объектах. Для химиков метод позволяет идентифицировать составы сложных смесей.

Источники:

1. Хорнак Дж. П. Основы МРТ. 2005

2. Марусина М.Я., Казначеева А.О. Современные виды томографии. Учебное пособие. - СПб: СПбГУ ИТМО, 2006. - 132 с.

3. McRobbie D. W. et al. MRI from Picture to Proton. - Cambridge university press, 2006.

4. http://www.fonar.com/nobel.htm

5. Александр Грек. Мозги на просвет: Цветные мысли. Популярная механика // 2008 — № 2(64) — стр. 54-58

6. http://www.bakuprightmri.com

7. http://mri-center.ru/mrt-otkritogo-tipa

8. Окользин А. В. Магнитно-резонансная спектроскопия по водороду в характеристике опухолей головного мозга //Онкология. - 2007. - Т. 8.

Дарья Прокудина