Главная · Гастрит · Генетическая связь органических соединений. Презентация на тему "генетическая связь"

Генетическая связь органических соединений. Презентация на тему "генетическая связь"

ВАРИАНТ 1




2. Рассчитайте количество вещества (в молях) и массу вещества (в граммах) каждого продукта при проведении мледующих превращений: этан → бромэтан → эатнол, если этан был взят массой 90 г. Выход продукта на каждой стадии синтеза условно принят за 100 %.



3. Составьте схему и уравнения реакций, с помощью которых из метана можно получить карбоновую кислоты.


ВАРИАНТ 2

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:


2. Рассчитайте количество вещества (в молях) и массу вещества (в граммах) каждого продукта при проведении следующих превращений: бензол → хлорбензол → фенол, если бензол был взят массой 156 г. Выход продукта на каждой стадии синтеза условно принят за 100%.


3. Составьте схему и уравнения реакций, с помощью которых из этилена можно получить аминокислоту.


ВАРИАНТ 3

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:



2. Рассчитайте количество вещества (в молях) и массу вещества (в граммах) каждого продукта при проведении следующих превращений: бензол → нитробензол → анилин, если бензол был взят массой 39 г. Выход продукта на каждой стадии синтеза условно принят за 100%.


3. Составьте схему и уравнения реакций, с помощью коорых из угля можно получить сложный эфир.


ВАРИАНТ 4

1. Напишите уравнения реакций, с помощью которых можно осуществитьследующие превращения:




2. Рассчитайте количество вещества (в молях) и массу вещества (в граммах) каждого продукта при проведении следующих превращений: хлорметан → метанол → метилацетат, если хлорметан был взят массой 101 г. Выход продукта на каждой стадии синтеза условно принят за 100 %.


3. Составьте схему и уравнения реакций, с помощью которых из метана можно получить ароматический амин.

74. Напишите уравнения и назовите продукты реакций по схеме:

75. Напишите уравнения и назовите продукты реакций по схеме:

76. Напишите уравнения и назовите продукты реакций по схеме:

77. Напишите уравнения и назовите продукты реакций по схеме:

78. Напишите уравнения и назовите продукты реакций по схеме:

79. Напишите уравнения и назовите продукты реакций по схеме:

80. Напишите уравнения и назовите продукты реакций по схеме:

81. Напишите уравнения и назовите продукты реакций по схеме:

82. Напишите уравнения и назовите продукты реакций по схеме:

83. Напишите уравнения и назовите продукты реакций по схеме:

84. Напишите уравнения и назовите продукты реакций по схеме:

85. Напишите уравнения и назовите продукты реакций по схеме:

86. Напишите уравнения и назовите продукты реакций по схеме:

87. Напишите уравнения и назовите продукты реакций по схеме:

88. Напишите уравнения и назовите продукты реакций по схеме:

89. Напишите уравнения и назовите продукты реакций по схеме:

90. Напишите уравнения и назовите продукты реакций по схеме:

91. Напишите уравнения и назовите продукты реакций по схеме:

92. Напишите уравнения и назовите продукты реакций по схеме:

93. Напишите уравнения и назовите продукты реакций по схеме:

94. Напишите уравнения и назовите продукты реакций по схеме:

95. Напишите уравнения и назовите продукты реакций по схеме:

96. Напишите уравнения и назовите продукты реакций по схеме:

97. Напишите уравнения и назовите продукты реакций по схеме:

98. Напишите уравнения и назовите продукты реакций по схеме:

99. Напишите уравнения и назовите продукты реакций по схеме:

100. Напишите уравнения и назовите продукты реакций по схеме:

101. Напишите уравнения и назовите продукты реакций по схеме:

Модуль 2. Гетероциклические и природные соединения

Пятичленные гетероциклические соединения

1. Напишите схемы и назовите продукты реакций азиридин со следующими реагентами: а) Н 2 О (t); б) NH 3 (t); в) НС1 (t).

2. Приведите схему реакции добычи оксиран. Напишите уравнения и назвить продукты реакций оксиран: а) с Н 2 О, Н + ; б) с С 2 Н 5 ОН, Н + ; в) с CH 3 NH 2 .

3. Приведите схемы взаимных превращений пятичленных гетероциклов с одним гетероатомом (цикл реакций Юрьева).

4. Что такое ацидофобнисть? Какие гетероциклические соединения являются ацидофобны-ми? Напишите схемы реакций сульфирования пирролу, тиофена, индола. Назовите продукты.

5. Приведите схемы и назовите продукты реакций галогенирования и нитрования пирролу и тиофена.

6. Приведите схемы и назовите конечные продукты реакций окисления и восстановления фуранов и пиррола.

7. Приведите схему реакции добычи индола из N-формил о толуидина. Напишите уравнения реакций нитрования и сульфирования индола. Назовите продукты.

8. Приведите схему реакции добычи 2-метилиндолу с фенилгидразина по методу Фишера. Напишите уравнения и назовите продукты реакций 2-метил-индол: а) с КОН; б) с СH 3 I.

9. Приведите и назовите таутомерные формы индоксилу. Напишите схему реакции добычи индиго синего с индоксила.

10. Приведите схемы и назовите продукты реакций восстановления и окисления индиго синего.

11. Напишите схемы и назовите продукты реакций 2-аминотиазолу: а) с НС1; а) с (СН 3 СО) 2 О; в) с CH 3 I.

12. Какой вид таутомерии характерен для азолов, чем он обусловлен-ный? Приведите таутомерные формы пиразола и имидазола.

13. Приведите схему синтеза имидазола с глиоксаля. Подтвердить схемами соответствующих реакций амфотерный характер имидазола. Назовите продукты реа-ций.

14. Приведите схемы реакций, подтверждающих амфотерный характер пиразола, бензимидазола, никотиновой (3-пиридинкарбоновои) кислоты, антраниловой (2-аминобензойной) кислоты.

15. Напишите схему синтеза 3-метилпиразолону-5 с ацетоуксусного эфира и гидразина. Приведите и назовите три таутомерные формы пиразолона-5.

16. Напишите схему синтеза антипирина с ацетоуксусного эфира. Приведите схему и назовите продукт качественной реакции на антипирин.

17. Напишите схему синтеза амидопирина с антипирина. Укажите качественную реакцию на амидопирин.

Шестичленные гетероциклические соединения

18. Напишите схемы и назовите продукты реакций, подтверждающих основные свойства пиридина и амфотерные свойства имидазола.

19. Изобразите и назовите таутомерные формы 2-гидроксипиридину. Напишите уравнения и назовите продукты реакций 2-гидроксипиридину: а) с РСl 5 ; б) с СН 3 І.

20. Изобразите и назовите таутомерные формы 2-аминопиридину. Напишите уравнение и назовите продукты взаимодействия 2-аминопиридину и 3-аминопиридину с соляной кислотой.

21. Приведите схемы и назовите продукты реакции, подтверждающие наличие первичноё ароматической аминогруппы в b- аминопиридина.

22. Приведите схему синтеза хинолина по методу Скраупа. Назовите промежуточные соединения.

23. Приведите схему синтеза 7-метилхинолина методом Скраупа. Назовите все промежуточные соединения.

24. Приведите схему синтеза 8-гидроксихинолина методом Скраупа. Назовите промежуточные соединения. Химическими реакциями подтвердите амфотерный характер конечного продукта.

25. Приведите схемы и назовите продукты реакций сульфирования, нитрования и окисления хинолина.

26. Напишите схемы и назовите продукты реакций хинолина: а) с СН 3 І; б) с КОН; в) с к. HNO 3 , к. H 2 SO 4 ; г) с НС1.

27. Приведите схемы и назовите продукты реакций нитрования индола, пиридинна и хинолина.

28. Приведите схемы и назовите продукты реакций изохинолина: а) с СН 3 І; б) с NaNH 2 , NH 3 ; в) с Br 2 , FeBr 3 .

29. Приведите схему синтеза акридина из N-фенилантраниловои кислоты по методу Рубцова-Магидсона-Григоровского.

30. Приведите схему реакции добычи 9-аминоакридину с акридина. Напишите уравнения и назовите продукты взаимодействия 9-аминоакридина а) с НСІ; б) с (СН 3 СО) 2 О.

31. Приведите схемы реакций окисления и восстановления хинолина, изохинолина и акридина. Назовите конечные продукты.

32. Напишите уравнения и назовите продукты реакции g- Пирон с конц. соляной кислотой. Приведите формулы природных соединений, в структуру которых входят циклы g- Пирон и a- Пирон.

33. Напишите схемы и назовите продукты реакций пиридина: а) с НСІ; б) с NaNH 2 , NH 3 ; в) с КОН.

34. Напишите схемы и назовите продукты реакций 4-аминопиримидин: а) с надл. НСІ; б) с NaNH 2 , NH 3 ; в) с Br 2) FeBr 3 .

35. Приведите схему синтеза барбитуровой кислоты с малонового эфира и мочевины. Чем обусловлен кислотный характер барбитуровой кислоты? Ответ подтвердить схемами соответствующих реакций.

36. Приведите схему таутомерных превращений и назовите таутомерные формы барбитуровой кислоты. Напишите уравнение реакции барбитуровой кислоты с водным раствором щелочи.

37. Приведите схему реакции добычи 5.5-диетилбарбитуровои кислоты с малонового эфира. Напишите уравнения и назовите продукт взаимодействия названной кислоты со щелочью (водн. Р-р).

38. Приведите схемы, укажите вид таутомерии и дайте названия таутомерным формам нуклеиновых оснований группы пиримидина.

39. Напишите схему взаимодействия мочевой кислоты со щелочью. Почему мочевая кислота двухосновная, а не трех основных?

40. Приведите уравнения качественной реакции на мочевую кислоту. Назовите промежуточные и конечные продукты.

41. Напишите схему таутомерного равновесия и назовите таутомерные формы ксантина. Приведите уравнения и назовите продукты реакций, подтверждающих амфотерный характер ксантина.

42. Приведите схемы, укажите вид таутомерии и дайте названия таутомерным формам нуклеиновых оснований группы пурина.

43. Какой из приведенных ниже соединений свойственна лактам-лактимна таутомерия: а) гипоксантин; б) кофеин; в) мочевая кислота? Приведите схемы соответствующих таутомерных преобразований.

Природне соединения

44. Напишите схемы и назовите продукты реакций ментола: а) с НСІ; б) с Na; в) с изовалериановой (3-метилбутановою) кислотой в присутствии к. H 2 SO. Назовите ментол по номенклатуре ИЮПАК.

45. Приведите схемы последовательных реакций получения камфоры с a-пинена. Напишите уравнения реакций, подтверждающих наличие в структуре камфоры карбонильной группы. Назовите продукты.

46. Приведите схемы и назовите гиродукты взаимодействия камфоры: а) с Вг 2 ; б) с NН 2 ОН; в) с Н 2 , Ni.

47. Приведите схему реакции добычи камфоры с борнилацетата. Напишите уравнение реакции, подтверждающей наличие карбонильной группы в структуре камфоры.

48. Какие соединения называют эпимеров? На примере D-глюкозы объясните явление епимеризации. Приведите проекционную формулу гексозы, епимернои D-глюкозы.

49. Какое явление называют мутаротации? Приведите схему цикло-цепных таутомерных преобразований b-D-глюкопираноз в водном растворе. Назовите все формы моносахаридов.

50. Приведите схему цикло-цепного таутомерного преобразования D-галактозы в водном растворе. Назовите все формы моносахарида.

51. Приведите схему цикло-цепного таутомерного преобразования D-маннозы в водном растворе. Назовите все формы моносахарида.

52. Приведите схему цикло-цепного таутомерного преобразования a-D- фруктофуранозы (вода. р-р). Назовите все формы моносахаридов.

53. Напишите схемы последовательных реакций образования озазону фруктозы. Еще монозы образуют такой же озазон?

54. Приведите схемы реакций, доказывающих наличие в молекуле глюкозы: а) пяти гидроксильных групп; б) напивацетального гидроксила; в) альдегидной группы. Назовите продукты реакций.

55. Напишите схемы реакций фруктозы со следующими реагентами: а) HCN; б) С 2 Н 5 ОН, Н + ; в) надл. СН 3 І; r) Ag(NH 3) 2 OH. Назовите полученные соединения.

56. Напишите схемы реакций превращения D-глюкозы: а) в метил-b-D-глюкопиранозид; б) в пентаацетил-b-D-глюкопиранозу.

57. Приведите формулу и дайте химическое название дисахарида, что при гидролизе даст глюкозу и галактозу. Напишите схемы реакций его гидролиза и окисления.

58. Что такое восстанавливающие и не восстанавливающие сахара? Из дисахаридов -мальтоза или сахароза, будет реагировать с реактивом Толленса (аммониачний р-р аргентум оксида)? Приведите формулы этих дисахаридов, дайте им названия по номенклатуре ИЮПАК, напишите схему реакции. Какие дисахариды могут ис-нять в a- и b-формах?

59. Какие углеводы называют дисахаридами? Что такое восстанавливающие но не восстанавливающие сахара? Реагируют мальтоза, лактоза и сахароза с реактивом Толленса (аммониачний р-р аргентум оксида)? Приведите уравнения реакций, дайте названия по номенклатуре ИЮПАК указанным дисахаридом.

60. Напишите схемы последовательных реакций получения аскорбиновой кислоты из D-глюкозы. Укажите кислотный центр в молекуле витамина С.

61. Напишите схемы реакций получения: а) 4-О-a-D-глюкопиранозидо-D-глюкопиранозы; б) a-D-глюкопиранозид-b-D-фруктофуранозида. Назовите исходные моносахариды. К какому типу дисахаридов относится каждое из в-в а) и б)?

62. Приведите схему реакции, позволяющей отличить сахарозу от мальтозы. Дайте названия по номенклатуре ИЮПАК этим дисахаридам, наведите схемы их гидролиза.

63. Приведите схему синтеза метил-b-D-галактопиранозиду с D- галактозы и его кислотного гидролиза.


Похожая информация.


>> Химия: Генетическая связь между классами органических и неорганических веществ

Материальный мир. в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит н первый прицеленный в тексте параграфа ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:

II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла .

III. Генетический ряд металла, которому соответствуют амфотерные оксид и гндроксид, очень богат саязями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:

В органической химии также следует различать более общее понятие - генетическая связь и более частное понятие генетический ря. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в кото-рый включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Иод определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но аато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.

Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:
1. Обжиг известняка:

1. Запишите уравнения реакций, иллюстрирующих следующие переходы:

3. При взаимодействии 12 г предельного одноатомного спирта с натрием выделилось 2.24 л водорода (н. у.). Найдите молекулярную формулу спирта и запишите формулы возможных изомеров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Алиса (в Стране Чудес Чеширскому коту): – Скажите, а куда мне отсюда идти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? Чеширский кот: – Это зависит от того, куда Вы хотите придти? 2






Стратегия синтеза «Я хочу воспеть хвалу сотворению молекул – химическому синтезу… …Я глубоко убежден, что он и есть искусство. И в то же время синтез – это логика». Роальд Хоффман (Нобелевская премия по химии 1981 г) Выбор исходного сырья Построение углеродного остова молекулы Введение, удаление или замена функциональной группы Защита группы Стереоселективность 5


СO + H 2 Ru, 1000 атм, C ThO 2, 600 атм, C Cr 2 O 3, 30 атм, C Fe, 2000 атм, C ZnO, Cr 2 O 3, 250 атм, C ПАРАФИНЫ ИЗОПАРАФИНЫ ТОЛУОЛ, КСИЛОЛЫ ВЫСШИЕ СПИРТЫ СH 3 OH 6


С n H 2n+2 Схема образования σ-связей в молекуле метана Модели молекул метана: шаростержневая (слева) и масштабная (справа) СH4СH4СH4СH4 Тетраэдрическое строение sp 3 -гибридизация σ - связи гомолитический разрыв связи X: Y гомолитический разрыв связи Реакции радикального замещения (S R) замещения (S R)ГорениеДегидрирование S – англ. substitution – замещение Прогноз реакционной способности 7


СH 3 Cl – МЕТИЛХЛОРИД CH 4 МЕТАН С – САЖА С 2 Н 2 – АЦЕТИЛЕН СH 2 Cl 2 – ДИХЛОРМЕТАН СHCl 3 – ТРИХЛОРМЕТАН СCl 4 – ТЕТРАХЛОРМЕТАН Н 2 – ВОДОРОД СИНТЕЗ ГАЗ СO + H 2 СИНТЕЗ ГАЗ СO + H 2 Сl 2, hγ Хлорирование С пиролиз Н 2 О, Ni, C Конверсия О 2, Окисление СH 3 OH – МЕТАНОЛ HCHO – МЕТАНАЛЬ растворители Бензол СHFCl 2 фреон HCOOH - муравьиная кислота Синтетический бензин СИНТЕЗЫ НА ОСНОВЕ МЕТАНА 8 СH 3 NO 2 – НИТРОМЕТАН СCl 3 NO 2 хлорпикрин СH 3 NH 2 метиламин HNO 3, C Нитрование


С n H 2n Схема образования σ- связей с участием sp 2 -гибридных облаков атома углерода Схема образования π – связей с участием p-облаков атома углерода Модель молекулы этилена Реакции электрофильного присоединения (A E) Полимеризация Полимеризация Окисление ОкислениеГорение Молекула плоская (120 0) sp 2 – гибридизация σ– и σ – и π – связи Есв (С = С)= 611 кДж/моль Есв (С – С)= 348 кДж/моль A – англ. addition – присоединение Прогноз реакционной способности 9


C 2 H 4 Этилен Полимеризация H 2 O, H + Гидратация Cl 2 Хлорирование Окисление ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH ЭТИЛОВЫЙ СПИРТ С 2 Н 5 OH СИНТЕЗЫ НА ОСНОВЕ ЭТИЛЕНА ДИХЛОРЭТАН ЭТИЛЕНОКСИД ЭТИЛЕНГЛИКОЛЬ УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД O 2, Ag KMnO 4, H 2 O O 2, PdCl 2, CuCl 2 ПЭНД ПЭНД С МПа 80 0 С, 0.3МПа, Al(C 2 H 5) 3, TiCl 4 СКД ПЭВД ПЭВД Бутадиен-1,3 (дивинил) Уксусная кислота Диоксан Уксусная кислота 10


С n H 2n-2 Схема образования σ- связей и π – связей с участием sp-гибридных облаков атома углерода Модели молекулы ацетилена реакции электрофильного присоединения (A E) окисление окисление ди-, три- и тетрамеризации ди-, три- и тетрамеризации горение горение реакции с участием «кислого» атома водорода Линейное строение (180 0) (цилиндрическое распределение электронной плотности) sp – гибридизация σ– и 2 σ – и 2π – связи Прогноз реакционной способности 11


C2H2C2H2 HСl, Hg 2+ H 2 O, Hg 2+ Реакция Кучерова С акт, С тримеризация СИНТЕЗЫ НА ОСНОВЕ АЦЕТИЛЕНА УКСУСНЫЙ АЛЬДЕГИД УКСУСНЫЙ АЛЬДЕГИД СuCl 2, HCl, NH 4 Cl димеризация ROH Уксусная кислота БЕНЗОЛ СКД Дивинил Хлоропрен СК хлоропреновый ВИНИЛАЦЕТИЛЕН ВИНИЛОВЫЕ ЭФИРЫ Поливиниловые эфирыПоливинилхлорид ВИНИЛХЛОРИД HCN, СuCl, HCl, 80 0 C АКРИЛОНИТРИЛ Волокна 12


13


Схема образования π-связей в молекуле бензола Делокализация электронной плотности в молекуле бензола Схема образования σ- связей в молекуле бензола с участием sp 2 – гибридных орбиталей атомов углерода С n H 2n-6 Прогноз реакционной способности Плоская молекула sp 2 – гибридизация σ– и σ – и π – связи Ароматическая структура Реакции электрофильного замещения (S E) Реакции радикального присоединения (А R) Реакции радикального присоединения (А R) Горение 14 М. Фарадей (1791–1867) Английский физик и химик. Основатель электрохимии. Открыл бензол; впервые получил в жидком состоянии хлор, сероводород, аммиак, оксид азота (IV).


БЕНЗОЛ H 2 /Pt, C гидрирование СИНТЕЗЫ НА ОСНОВЕ БЕНЗОЛА НИТРОБЕНЗОЛ НИТРОБЕНЗОЛ Сl 2, FeCl 3 хлорирование HNO 3, H 2 SO 4 (конц) нитрование CH 3 Cl, AlCl 3 алкилирование ХЛОРБЕНЗОЛ Анилин ТОЛУОЛ ТОЛУОЛ Бензойная кислота 2,4,6-тринитро- толуол СТИРОЛ СТИРОЛ Полистирол 1. СH 3 CH 2 Cl, AlCl 3 Алкилирование 2. – H 2, Ni дегидрирование СH 2 =CH-CH 3, AlCl 3 алкилирование КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) КУМОЛ (ИЗОПРОПИЛБЕНЗОЛ) ЦИКЛОГЕКСАН ЦИКЛОГЕКСАН Фенол Ацетон ГЕКСАХЛОРАН ГЕКСАХЛОРАН 15


СИНТЕЗЫ НА ОСНОВЕ МЕТАНОЛА СH 3 OH ВИНИЛМЕТИЛОВЫЙ ЭФИР ВИНИЛМЕТИЛОВЫЙ ЭФИР ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛАНИЛИН C 6 H 5 N(CH 3) 2 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 ДИМЕТИЛОВЫЙ ЭФИР CH 3 –O–CH 3 МЕТИЛАМИН СН 3 NH 2 МЕТИЛАМИН СН 3 NH 2 ВИНИЛАЦЕТАТ МЕТИЛХЛОРИД СН 3 Сl МЕТИЛХЛОРИД СН 3 Сl ФОРМАЛЬДЕГИД СuO, t HCl NH 3 МЕТИЛТИОЛ СН 3 SH МЕТИЛТИОЛ СН 3 SH H 2 S, t С 6 H 5 NH 2 + CO 16 H +, t




СИНТЕЗЫ НА ОСНОВЕ ФОРМАЛЬДЕГИДА МЕТАНОЛ СH 3 OH МЕТАНОЛ СH 3 OH ПАРАФОРМ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ФЕНОЛФОРМАЛЬДЕГИДНЫЕ СМОЛЫ ТРИОКСАН ПЕРВИЧНЫЕ СПИРТЫ КАРБАМИДНЫЕ СМОЛЫ КАРБАМИДНЫЕ СМОЛЫ УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) УРОТРОПИН (ГЕКСМЕТИЛЕНТЕТРАМИН) МУРАВЬИНАЯ КИСЛОТА МУРАВЬИНАЯ КИСЛОТА Гексоген [O] [H] 1861 г. А.М. Бутлеров 18


CxHyOzCxHyOz Генетическая связь кислородсодержащих органических соединений АЛЬДЕГИДЫ АЛЬДЕГИДЫ КАРБОНОВЫЕ КИСЛОТЫ КАРБОНОВЫЕ КИСЛОТЫ КЕТОНЫ КЕТОНЫ СЛОЖНЫЕ ЭФИРЫ СЛОЖНЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ ПРОСТЫЕ ЭФИРЫ СПИРТЫ гидролиз дегидратация гидрирование окисление, дегидрирование этери- фикация этери- фикация окисление H +, t




C n H 2n+2 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены C n H 2n-6 Арены, бензол




C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены α 23


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены Каучуки Катализатор Циглера – Натта (1963 г) 25


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичн ые ВторичныеТретичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


C n H 2n+2 C n H 2n ЦиклоалканыАлкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены


Применение анилина АНИЛИН Н.Н. Зинин (1812 – 1880) Лекарственные вещества Красители Взрывчатые вещества Cтрептоцид НорсульфазолФталазол Получение анилина – реакция Зинина Тетрил Анилиновый желтый Нитробензол п-Аминобензойная кислота (ПАБК) Сульфаниловая кислота индиго Парацетамол 28


C n H 2n+2 C n H 2n Циклоалкан ы Алкены C n H 2n-2 АлкиныАлкадиены Первичны е Вторичны е Третичные C n H 2n-6 Арены, бензол Полиэтилен Полипропилен Каучуки Жиры Синтетические красители Фенолформаль- дегидные смолы Белки 12 C n H 2n Циклоалканы Алкены C n H 2n-2 АлкиныАлкадиены



Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, т. е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

уже можно рассматривать как полный: он начинается простым веществом бромом и им же заканчивается.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:

Генетическая связь - понятие более общее, чем генетический ряд, являющийся пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый приведенный в тексте параграфа ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов: генетический ряд элемента-металла, генетический ряд элемента-неметалла, генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид.

I. Генетический рад элемента-металла. Наиболее богат веществами ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

II. Генетический ряд элемента-неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6:

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например летучее водородное соединение неметалла. В нашем примере:

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

III. Генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд алюминия:

В органической химии также следует различать более общее понятие - «генетическая связь» и более частное понятие - «генетический ряд». Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

Каждой цифре соответствует определенное уравнение реакции:


Под определение генетического ряда не подходит последний переход - образуется продукт не с двумя, а с множеством углеродных атомов, но зато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества. Например, рассмотрим схему получения анилина - органического вещества из известняка - неорганического соединения:

Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:

Вопросы и задания к § 23