Главная · Гастрит · Двухфотонный лазерный микроскоп. Конфокальная микроскопия. Принцип действия, примеры исследования Лазерный микроскоп

Двухфотонный лазерный микроскоп. Конфокальная микроскопия. Принцип действия, примеры исследования Лазерный микроскоп


Конфокальный лазерный сканирующий микроскоп с уникальной оптической схемой и системой детектирования, которые позволяют получать оптические срезы с максимальной эффективностью. Вы можете работать с мультиканальной флуоресценцией вплоть до десяти красителей и использовать непрерывную спектральную детекцию во всем видимом диапазоне длин волн.

LSM 710 на инвертированном штативе микроскопа Axio Observe Z1 - это непревзойденный конфокальный микроскоп для клеточной биологии и биологии развития. Совместно с прямым штативом AxioImager или AxioEmainer - LSM 710 превращается в инструмент для работы в нейробиологии, физиологии и изучении биовзаимодействий в самом широком спектре экспериментов.

Оптическая схема предполагает использование до восьми лазерных портов и любую комбинацию лазерных линий от близкого УФ спектра до ИК. 34-канальный модуль детекции QUASAR позволяет оптимальную стратегию захвата для различных спектров излучения, без привязки к фильтрам и дихроичным зеркалам. Вы всегда можете направить любую часть спектра сигнала на любой выбранный Вами детектор.

Спектральное сканирование предполагает эксперименты с высоким разрешением и обнаружением до 10 каналов одновременно.

В сканирующем модуле LSM 710 используется передовое техническое решение: возвратный контур спектральной переработки (Spectral Recycling Loop), обеспечивающий усиление сигнала за счет многократного повторного пропускания через спектральную решетку всех неразделенных частей флуоресцентного сигнала. Коррекция плоскости поляризации части флуоресценции увеличивает суммарный эмиссионный сигнал в среднем на 15 -17 %!

Модификация LSM 710 NLO - это лазерный сканирующий микроскоп, оснащенный фемтосекундным мультифотонным лазером, генерирующим излучение высокой плотности в инфракрасной области 680-1080 нм. Благодаря свойствам такого лазера мы можем проникать на глубину до 500 мкм, при этом возбуждение происходит только внутри фокального микрообъема, менее 0,1 мкм 3 , что позволяет бережно воздействовать на живую ткань.

Технические характеристики:

  • Сканирующий модуль с двумя, тремя одноканальными высокочувствительными детекторами или с 34-х канальным спектральным детектором для быстрого параллельного захвата полного эмиссионного профиля;
  • Произвольный выбор спектрального диапазона регистрации сигнала с разрешением до 3 нм (последовательное сканирование) и 10 нм (параллельное сканирование);
  • Детектор проходящего света;
  • Независимых гальванометрических сканирующих зеркала Два;
  • Сканирующее разрешение от 4 х 1 до 6144 х 6144 пикселей;
  • Скорость сканирования - 14 х 2 скоростей сканирования; 5 рамок/сек при 512 х 512 пикселей; 0.38 мсек/линию из 512 пикселей (2619 линий/сек);
  • Сканирующее увеличение ZOOM от 0.6х до 40х с шагом 0.1х;
  • Свободное вращение на 360° сканирующей рамки;
  • Конфокальный pinhole - моторизованный конфокальный pinhole плавной регулировкой диаметра и координат;
  • Разрядность данных - 8, 12 или 16 бит;
  • Лазерные линии - 355, 405, 458, 488, 514, 543, 561, 594, 633; перестраиваемый 488-640;
  • Варианты штативов - инвертированный AxioObserver ; прямой AxioImager ; прямой с фиксированным столиком AxioExaminer .

Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.

Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.

Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.

Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.

Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.

Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.

Новые методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.

Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.

Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.

Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.

Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.

Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000 . В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.

NS-3500 представляет собой высокоскоростной конфокальный лазерный сканирующий микроскоп (CLSM) для проведения высокоточных и надежных трехмерных измерений топографии поверхности. Получение конфокального микроскопического изображения в реальном времени достигается за счет использования быстрых сканирующих оптических модулей и алгоритмов обработки данных.

Данная система является перспективным решением для измерения и проверки трехмерных микроскопических структур, таких как полупроводниковые подложки, FPD панели, MEMS устройства, стеклянные подложки и просто различные поверхности. Микроскоп NS-3500 позволяет проводить измерения в различных областях (область сканирования размером до 10 × 10 мм) образцов с размерами до 150×150 мм за счет большого диапазона перемещения предметного столика. Также имеется опциональная возможность расширения платформы до 200×200 мм.

При необходимости измерения различных точек/областей более габаритных образцов доступна модификация измерительной головки промышленного типа (см. NS-3800).

  • Неразрушающий оптический 3D-контроль с высоким разрешением
  • Получение конфокального изображения в реальном времени
  • Различное оптическое увеличение для наблюдаемой области
  • Одновременная конфокальная микроскопия и микроскопия белого света
  • Автоматический поиск усиления для тонкой фокусировки
  • Компенсация наклона
  • Простота анализа полученных данных
  • Высокоточное и высокоскоростное измерение высоты
  • Возможность качественного анализа толщины полупрозрачных материалов
  • Отсутствие пробоподготовки
  • Режим двойного сканирования вдоль вертикальной оси Z
  • Сшивание изображений для анализа больших областей

Области применения

Лазерный сканирующий микроскоп NS-3500 является идеальным решением для измерения высоты, ширины, глубины, углов, площади, а также объемной визуализации микроструктур, таких как:

  • Полупроводники - IC подложки, высота выступов/ступеней и проволочных петлей, анализ дефектов, CPM процессы (химико-механическая планаризация)
  • Плоскопанельные дисплеи (FPD) - анализ сенсорных панелей, ITO подложек, высота разделительной колонны в ЖК-дисплее
  • МЭМС устройства - трехмерный профиль структуры, шероховатость поверхности, подложки
  • Стеклянные поверхности - тонкопленочные солнечные элементы, текстура солнечного элемента, анализ рисунка после лазерного воздействия
  • Исследование материалов - анализ опорных поверхностей зажимного устройства, шероховатости и сколов

Программное обеспечение NSWorks & NSViewer

  • Простое и интуитивное управление даже для новых пользователей
  • ПЗС изображение, конфокальное изображение, а также основная панель управления одновременно отображаются на одном экране
  • Разные параметры настройки предназначены для передовых приложений
  • Построение конфокального изображения в режиме реального времени обеспечивает немедленную обратную связь с оборудованием
  • Отдельное окно анализа с удобными графическими инструментами для создания отчетности
  • Объемный графический вид позволяет пользователю легко распознать микроскопическую структуру образца

Сшивание изображения

При необходимости анализа большой области сканирования (до 15×15 мм макс.) доступно последовательное поточечное измерение мелких областей с их последующим сшиванием. Данная особенность реализована за счет использования моторизированного предметного столика и программной утилиты NSMosaic. После сшивания полученное изображения может быть проанализировано как единое целое со всеми доступными функциями из NSViewer.

Видео-обзор: Сшивание изображений на конфокальном лазерном сканирующем микроскопе NS-3500

Примеры измерений с помощью NS-3500



Измерение высоты стандарта VLSI


Анализ выступающей части на OLED


Анализ результатов
лазерной обработки OLED


Кварцевая подложка


Поверхность бриллианта


Дефект на металлическом зеркале


Неровность на выпуклой поверхности


Графен


Подложка оксида индия и олова


Анализ структуры микролинзы


Анализ узкой области подложки


Вид исследуемого образца
при различном оптическом увеличении


Постобработка изображения профиля поперечного сечения


Сшивание изображения при анализе монеты


Анализ профиля поверхности капли воды

Двухфотонный микроскоп является разновидностью мультифотонного флуоресцентного микроскопа . Его преимущества по сравнению с конфокальным микроскопом - большая проникающая способность и низкая степень фототоксичности .

Двухфотонный микроскоп был впервые сконструирован Винфредом Денком в лаборатории В. В. Вебба в Корнеллском университете . Он скомбинировал идею двухфотонного возбуждения с лазерным сканированием.

Процесс двухфотонного возбуждения происходит следующим образом: два фотона , обладающие низкой энергией, возбуждают флюорофор (способную к флюоресценции молекулу или часть молекулы) в течение одного квантового события. Результатом этого возбуждения является последующее испускание возбужденными молекулами флюоресцентного фотона. Энергия флуоресцентного фотона больше энергии возбуждающих фотонов.

Вероятность того, что оба фотона возбуждения будут поглощены одной молекулой, очень мала. Поэтому необходим большой поток возбуждающих фотонов, который можно получить при помощи лазера, испускающего фотоны с большой частотой следования импульсов (80 МГц). Наиболее часто используемые флюорофоры имеют спектр возбуждения в промежутке 400-500 нм, в то время как длина волны возбуждающего лазера находится в промежутке 700-1000 нм (область инфракрасных волн). Если флюорофор поглотит одновременно два фотона, то он получит достаточно энергии, чтобы перейти в возбужденное состояние. Далее возбужденный флюорофор испустит один фотон (в видимой части спектра), длина волны которого зависит от типа флюорофора.

Поскольку для того, чтобы флюорофор перешёл в возбуждённое состояние, необходимо поглощение двух фотонов, вероятность испускания флюорофором вторичного фотона пропорциональна квадрату интенсивности возбуждения. Поэтому флуоресценция будет сильнее в случае, когда луч лазера четко сфокусирован, а не рассеян. Максимальная флуоресценция наблюдается в фокальном объёме (объёме, где сфокусирован луч лазера) и демонстрирует резкое уменьшение в области вне фокуса.

Конструкция

В двухфотонном микроскопе луч инфракрасного лазера сфокусирован с помощью собирающей линзы объектива . Обычно используется высокочастотный 80 МГц сапфировый лазер, испускающий импульс с длительностью 100 фемтосекунд, обеспечивающей высокую плотность фотонного потока, которая необходима для двухфотонного поглощения.

Свет, испускаемый флюоресцирующим образцом, усиливается с помощью высокочувствительного фотоумножителя . Поскольку приёмник света является одноканальным, наблюдаемая в данном фокальном объёме интенсивность света формирует один пиксел изображения. Для того чтобы получить двухмерное пиксельное изображение, производится сканирование в фокальной плоскости образца.

Преимущества и недостатки

Использование инфракрасного света для возбуждения флюорофора в исследуемых тканях имеет свои преимущества :

  • Длинные волны рассеиваются меньше, чем короткие, что обеспечивает высокое пространственное разрешение.
  • Возбуждающие фотоны имеют маленькую энергию, следовательно, они менее разрушительны для тканей (что продлевает жизнь исследуемой ткани).

Но есть и некоторые недостатки:

  • Для работы лазера требуются дорогие оптические приборы для обеспечения интенсивности импульса.
  • Двухфотонный спектр поглощения флюорофора может сильно меняться в отличие от однофотонного спектра поглощения.
  • Луч с длиной волны более 1400 нм значительно поглощается водой в живых тканях.

Вновь сконструированный многопараметрический микроскоп фирмы Leitz позволяет проводить одновременно анализ поглощения гемоглобина эритроцитов и флуоресценции меченных ФИТЦ клеток, содержащих гемоглобин S, причем можно анализировать миллионы клеток. Система (LEYTAS), соединенная с анализирующим изображение компьютером, сначала фокусируется и считает все эритроциты вдоль одного ряда полей зрения, используя нижнее освещение фиолетовым светом (415 нм). После сканирования по одной линии длиной 8 см освещение по команде компьютера меняется с проходящего на падающее, и все поля зрения вдоль линии сканирования анализируются повторно, причем сканирование для определения флуоресцирующих объектов ведется в соответствии с кривой ранее определенных положений фокуса. Для каждого определенного объекта его флуоресцентное и поглощающее изображение хранятся в памяти в виде уровней серого. Из памяти изображение выводится на телевизионный экран, что позволяет визуально оценить выбранные объекты (рис. 6.9). От каждого подозрительного сигнала в памяти сохраняется одно флуоресцентное и два поглощающих изображения. Визуальное сравнение флуоресцентного и поглощающего изображений при большом увеличении позволяет определить природу данного сигнала. Таким образом артефакты можно отличить от заслуживающих внимания клеток. То, что сигнал действительно соответствует мутантной клетке, подтверждается с помощью микроскопа. Поскольку все координаты сохраняются в памяти, то выставление клеток производится автоматически. Большинство сигналов являются артефактами. На рис. 6.9 только кадр № 79 относится, вероятно, к мутантной клетке , что можно было бы подтвердить с помощью микроскопа.

Рис. 6.9. Выявление с помощью системы LEYTAS подозрительных изображений в препарате, окрашенном меченной ФИТЦ сывороткой против S-гемоглобина. Эти изображения выводятся на монитор. Слева направо: номер кадра, его флуоресцентное изображение и изображение того же кадра, формирующееся за счет поглощения при большем увеличении

Другие антитела против мутантных эритроцитов были использованы Лэнглойсом с соавт. , определявшими мутантные клетки с помощью проточной цитометрии. Можно предположить, что частота выявленных в этой работе мутантов была значительно выше, чем частота встречаемости клеток с HbS.

Помимо определения редких мутантов, анализ изображения может быть также применен для определения редких раковых клеток в период ремиссии, а также инфицированных вирусом клеток на ранней стадии инфекционного заболевания.

7. Сканирующая лазерная микроскопия

Обычно в микроскопии изображения очень мелких структур получают путем освещения всего препарата и увеличения изображения объективом. При использовании вместе с микроскопом телевизионной камеры принцип получения изображения не изменяется - изображение также создается объектом, и лишь затем сканируется телекамерой. Фактически все методы сканирования применялись в основном в весьма ограниченной области микрофотометрии - для определения величин поглощения, флуоресценции или отражения. Недавно техника сканирования была применена для создания высококачественных изображений с помощью мощных и хорошо сколлимированных лазерных пучков. В оптической лазерной сканирующей микроскопии объект не освещается целиком, а сканируется шаг за шагом . В каждой освещенной точке измеряется прошедший, отраженный или испускаемый свет. Изображение создается за счет накопления результатов этих измерений для каждой точки после их аналоговой или цифровой обработки, как матрица в памяти компьютера.

В приборе, имеющемся в нашей лаборатории (Zeiss, ФРГ), сканирование выполняется с помощью гальванометров с сервоприводами. Время сканирования сравнительно короткое (2 с на поле из 512x512 пикселов). Процесс сканирования контролируется микропроцессором. В качестве фотодетектора используется ФЭУ. Его сигнал проходит через блок аналоговой обработки, который контролирует яркость и контрастность.

После оцифровки этот сигнал попадает в буферную память, куда он записывается с видеочастотой. Соответственно стационарное изображение на мониторе получается при условии, что во время считывания столик стоит неподвижно. Плавно меняющееся увеличение может быть получено с помощью блока переменного увеличения. Сканирующий лазерный микроскоп можно использовать как с обычным, так и с лазерным источником света. С помощью лазера можно получить как падающее освещение (для отражения и флуоресценции), так и проходящее освещение (для поглощения, фазового или дифференциального интерференционного контраста). В качестве обычного источника света можно использовать только лампу накаливания, снабженную световодом. Для обеспечения лучшей фокусировки и возможностей поиска на препарате, а также для исследования препаратов с двойным окрашиванием, мы добавили к лазерному сканнеру обычный блок эпиосвещения. Принципиальными преимуществами лазерного сканирования являются:

1) низкий уровень аутофлуоресценции в оптическом пути, который достигается благодаря точечному освещению;

2) высокая чувствительность микроскопа, возникающая вследствие использования мощного лазерного света, сфокусированного в точке. Можно наблюдать даже слабо флуоресцирующие ДНК-зонды;

3) использование оптики с малым увеличением. Интенсивность флуоресценции достаточно высока, что позволяет работать с объективом Х2,5. Это является важным преимуществом при проведении исследований мозга;

4) низкий уровень выцветания, так как время освещения каждой точки очень короткое;

5) возможность проведения многофакторного анализа;

6) последовательное сканирование на разных уровнях при конфокальной сканирующей микроскопии. Данный метод применяется в тех исследованиях, где надо работать с очень слабой флуоресценцией,

например при проведении реакции гибридизации. Лазерная сканирующая микроскопия много дала также для исследований мозга, поскольку она позволяет использовать оптику с малым увеличением, необходимую при исследовании связей в нервных сетях. На рис. 6.10 представлены нервные клетки из гиппокампа крысы. Эти клетки были маркированы для выявления специфических молекул. По сравнению с нормальной флуоресцентной микроскопией контраст между изображением и фоном, получаемый с помощью лазерного сканирования, намного выше: здесь остается только очень низкий уровень нежелательного фонового свечения. С помощью лазерного сканирования реакцию можно также оценить количественно, поскольку данная техника позволяет установить порог между клетками и фоном для улучшения контраста изображения, получаемого с препаратов с очень низким содержанием продукта реакции.

Кроме того, лазерное сканирование открывает новые возможности для исследования с помощью световой микроскопии без дополнительного окрашивания ультратонких срезов, изготовленных для электронной микроскопии .

Рис. 6.10. Флуоресцентное изображение гиппокампа крысы, полученное с помощью лазерного сканирующего микроскопа. Срезы были обработаны флуоресцентно меченными антителами к гуанинмонофосфату. Увеличение: объектив Х40; окуляр ХЮ. Шкала 100 мкм.

8. Литература

1. Yong, M. R. (1961) Quart. J. Microsc. Sci., 102, 419.

2. Price, Z. H. (1965) Am. J. Med. Technol., 31, 45.

3. Rost, F. W. (1972) In Histochemistry, Theoretical and Applied. Everson Pearse, A. G (ed.), Churchill Livingstone, Edinburgh, Vol. 2, p. 1171,

4. Siegel, J. I. (1982) Int. Lab., 12, 46.

5. Ploem, J. S. and Tanke, H. (1987) Introduction to Fluorescence Microscopy. Royal Microscopical Society, University Press, Oxford.

6. Lansing Taylor, D., Waggoner, A. S., Murphy, R. F., Lanni, F. and Birge, R. R. (1986) Applications of Fluorescence in the Biomedical Sciences. Alan Liss, New York.

7 Patzett, W. (1972) Lietz-Mitt. Wiss. und Techn., Bd V, Nr 7, 226.

8 Giloh, H. and Sedat, J. W. (1982) Science, 217, 1252.

9 Johnson, G. D. and de C. Nogueira Araujo, G. M. (1981) J. Immunol. Methods, 43, 349.

10 Ploem, J. S. (1967) Zeitschrift Wiss. Microskopie, 68, 129.

11 Nairn R. С (1976) Fluorescent Protein Tracing. Livingstone, Edinburgh.

12. Kraft, W. (1973) Leitz Techn. Inform., 2, 97.

Антони ван Левенгука чаще других называют изобретателем микроскопа. С исторической точки зрения это не совсем верно: задолго до него и знаменитый Галилей, и отец и сын Янсены, и Корнелиус Дреббель представили публике свои оптические приборы. Однако слава Левенгука вовсе не беспочвенна: именно ему впервые удалось рассмотреть одноклеточные организмы, клетки крови, строение глаз насекомых — то есть действительно выйти на микроуровень.

Заставить каплю повиснуть и не упасть — самая сложная задача. Для этого подойдет карандаш или корпус от шариковой ручки. Стоит поэкспериментировать с углами наклона и количеством воды.

Вопреки распространенному представлению, микроскоп Левенгука совсем не был похож на современный. Он представлял собой одну-единственную линзу, зажатую в специальном штативе. Человек несведущий скорее назвал бы этот прибор лупой.


Попасть лазером в каплю воды не так-то просто. Возможность надежно закрепить указку очень важна. Мы использовали кронштейны для пайки из радиомагазина.

Капля воды — это та же линза. Взгляните на определение: линза — это деталь из прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения (сферическими поверхностями). Капля имеет форму сферы, вода однородна, поверхностное натяжение работает на ней лучше всякой полировки, и, наконец, коэффициент преломления воды не равен таковому у воздуха. А значит, капля — это линза, хотя и не очень хорошая.


Площадь изображения на экране многократно превышает сечение лазерного луча. Поэтому, чтобы изображение было ярким, стоит раздобыть мощную лазерную указку с зеленым лучом.

Если направить на каплю луч лазерной указки и спроецировать его на белый лист бумаги, мы увидим, что происходит внутри капли. Лазер дает когерентное (образно говоря, параллельное) излучение, поэтому можно сказать, что его луч изначально идеально сфокусирован. Теоретически можно было бы использовать и обычную лампу, но для точной фокусировки ее света в капле понадобилась бы куда более сложная оптическая система. Не стоит обольщаться: это неплохой опыт по оптике, но не по биологии. Коэффициент увеличения капли невелик, поэтому объекты, которые вы увидите на экране, — это вовсе не микроорганизмы, а просто частицы пыли или мелкие волоски. Эффект движения создается за счет перемешивания воды внутри капли. И все же в зрелищности опыту не откажешь.