Главная · Метеоризм · Зрение будущего: искусственные глаза, сетчатка и импланты в мозге . Искусственная сетчатка глаза Цифровой синтезатор запахов

Зрение будущего: искусственные глаза, сетчатка и импланты в мозге . Искусственная сетчатка глаза Цифровой синтезатор запахов

28 Апреля 2015

Исследователи медицинской школы Стэндфордского университета, работающие под руководством профессора Даниэля Паланкера (Daniel Palanker), разработали беспроводной сетчаточный имплантат, который в будущем позволит восстанавливать зрение в пять лучше, чем существующие устройства. Результаты исследований на крысах свидетельствуют о способности нового устройства обеспечивать функциональное зрение пациентам с дегенеративными заболеваниями сетчатки, такими как пигментная дистрофия сетчатки и макулярная дегенерация.

Дегенеративные заболевания сетчатки приводят к разрушению фоторецепторов – так называемых палочек и колбочек, – тогда как остальные части глаза, как правило, сохраняются в хорошем состоянии. Новый имплантат использует электрическую возбудимость одной из популяций сетчаточных нейронов, известных как биполярные клетки. Эти клетки обрабатывают поступающие с фоторецепторов сигналы до того, как они достигают ганглионарных клеток, отправляющих зрительную информацию в головной мозг. Стимулируя биполярные клетки, имплантат пользуется важными естественными свойствами нейронной системы сетчатки, что обеспечивает получение более детализованных изображений, по сравнению с устройствами, не воздействующими на эти клетки.

Изготавливаемый из оксида кремния имплантат состоит из шестиугольных фотоэлектрических пикселей, конвертирующих световое излучение, испускаемое надеваемыми на глаза пациента специальными очками, в электрический ток. Эти электрические импульсы стимулируют биполярные клетки сетчатки, запуская достигающий головного мозга нейронный каскад.

назад

Читать также:

06 Апреля 2015

Как выглядят магнитные волны?

Чип твердотельного компаса, передающий сигналы в области коры головного мозга слепой крысы, отвечающие за обработку визуальной информации, позволил животному «видеть» геомагнитные поля.

читать 20 Июня 2013

Беспроводной протез сетчатки

Биотехнологи из Стэнфордского университета успешно пересадили в глаза крыс протезы сетчатки, которые обходятся без источника питания и требуют минимального хирургического вмешательства для имплантации.

читать 22 Февраля 2013

Электронные сетчатки совершенствуются

Беспроводная бионическая сетчатка Alpha IMS работает без внешней камеры, обеспечивая свободное движение глаз, и подаёт сигналы от 1500 пикселей на близлежащие нейронные слои сетчатки и на зрительный нерв, полностью имитируя работу клеток-фоторецепторов.

читать 18 Февраля 2013

Первая электронная сетчатка выходит на рынок США

FDA одобрило первую искусственную сетчатку – имплантируемое устройство с некоторыми функциями сетчатки, которое поможет людям, потерявшим зрение вследствие генетического заболевания – пигментного ретинита.

читать 14 Мая 2012

Оптоэлектронная сетчатка без батареек

Для создания искусственной сетчатки ученые решили использовать фотоэлементы, активируемые инфракрасным лучом, что позволило совместить передачу визуальной информации с передачей энергии и упростить устройство имплантата.

МОСКВА, 13 мая - РИА Новости. Американские биотехнологи создали прототип искусственной сетчатки глаза, который не требует системы питания, и работает на энергии инфракрасного излучения, говорится в статье, опубликованной в журнале Nature Photonics.

На сегодняшний день ученые во всем мире разрабатывают несколько видов имплантатов, в теории способных вернуть зрение, утерянное в результате дегенеративных болезней или происшествий. В одних случаях биологи экспериментируют со стволовыми клетками или отдельными клетками сетчатки, в других - физики и биотехнологи пытаются приспособить различные электронные приборы к работе с мозгом человека и животных. Но до сих пор ни в одном исследовании не было достигнуто существенных успехов.

Кибер-глаз

Группа ученых под руководством Джеймса Лаудина (James Loudin) из Стэнфордского университета (США) разработала новый тип электронной сетчатки глаза, пригодной для получения изображения высокой четкости и не требующей внешнего источника питания - основного препятствия на пути развития подобных технологий.

"Наше изобретение работает примерно так же, как солнечные батареи на крыше дома, преобразуя свет в электрические импульсы. Однако в нашем случае электричество питает не "холодильник", а направляется в сетчатку в качестве сигнала", - пояснил один из участников группы Дэниел Паланкер (Daniel Palanker).

Искусственная сетчатка глаза Лаудина и его коллег представляет собой набор из множества микроскопических единичных кремниевых пластинок, объединяющих в себе светочувствительный элемент, генератор электричества, а также некоторые другие элементы. Для работы этой сетчатки необходимы специальные очки со встроенной видеокамерой и карманный компьютер, обрабатывающий изображение.

Данное устройство работает следующим образом: камера в очках непрерывно преобразует свет в порции электронных импульсов. Каждый "кадр" обрабатывается на компьютере, делится на две половинки - для правого и левого глаза и передается в инфракрасные излучатели на обратной стороне линз очков. Очки испускают короткие импульсы инфракрасного излучения, которое активирует фотодатчики на сетчатке глаза и заставляет их передавать электрические импульсы, кодирующие картинку, в оптические нейроны.

"Современные имплантаты очень громоздкие, и операции по вставке всех необходимых компонентов в глаз невероятно сложны. В нашем случае хирург должен сделать лишь один небольшой надрез на сетчатке и погрузить под нее фоточувствительный компонент устройства", - продолжил Паланкер.

Инфракрасное прозрение

По словам ученых, использование инфракрасного света для передачи информации обладает двумя ключевыми преимуществами. Во-первых, он позволяет наращивать мощность импульса до очень высоких значений, не вызывая боль в живых клетках сетчатки, так как светочувствительные клетки не реагируют на инфракрасное излучение. Во-вторых, высокая мощность излучения улучшает четкость изображения в тех случаях, когда нейроны под сетчаткой сильно повреждены или слабо реагируют на электрические импульсы.

Ученые проверили работу своего изобретения на сетчатках глаза и нервной ткани, взятых у зрячих и у слепых крыс. В этом эксперименте они прикрепляли фотоэлементы к небольшим кусочкам сетчатки, подключали электроды к прилегающим к ней нейронам и следили, начинают ли они испускать импульсы при облучении видимым и инфракрасным светом.

Разработчиком искусственной кремниевой сетчатки (ASR -- Artificial Silicon Retina) является фирма Optobionics. Искусственная кремниевая сетчатка - это микросхема диаметром 2 мм и толщиной 0,025 мм, содержащая приблизительно три с половиной тысячи микроскопических фотодиодов, каждый из которых снабжен собственным стимулирующим электродом. Фотодиоды преобразуют свет в электрические импульсы, выводящиеся на стимулирующие электроды и возбуждающие зрительные нервные окончания. Искусственная сетчатка осуществляет имитацию работы глаза на уровне фоторецепторного слоя. Параллельно с вживлением искусственной сетчатки пациенту устанавливается контактная линза, обеспечивающая фокусировку света именно на нее.

Предложенная американскими исследователями в 2006 г., японскими - в 2007 г. искусственная сетчатка представляет собой тончайшую алюминиевую матрицу с полупроводниковыми элементами из кремния. Чип имеет размеры 3,5 х 3,3 миллиметра и содержит 5760 кремниевых фототранзисторов, которые играют роль светочувствительных нейронов в живой сетчатке. Эти транзисторы связаны с другими 3600 транзисторами, которые подражают нервным клеткам сетчатки, осуществляющим предварительную обработку зрительной информации перед отправкой в мозг.

Новый чип хорошо приспосабливается к изменениям в яркости и контрастности наблюдаемой сцены, а также прекрасно воспринимает движущиеся предметы, выделяя их на неподвижном фоне. Однако перед началом клинических испытаний американские новаторы намерены доработать свой проект - уменьшить размеры чипа и снизить его энергопотребление.

По принципу действия искусственная сетчатка напоминает настоящую: при попадании лучей света в полупроводниках образуется электрическое напряжение, которое в качестве зрительного сигнала должно передаваться в мозг и восприниматься в виде изображения.

В 2009 г. американским исследователям удалось связать нервные клетки с биосовместимой пленкой, вырабатывающей под действием света слабый электрический ток. Основа искусственной сетчатки – тонкая пленка, представляющая собой «бутерброд» из двух слоев: слоя наночастиц теллурида ртути и положительно заряженного слоя полимера PDDA. Оба слоя ученые соединили с помощью специального клея и нанесли на поверхность «бутерброда» биосовместимое аминокислотное покрытие, чтобы нервные клетки могли без проблем взаимодействовать с пленкой. На пленке ученые разместили культуру нейронов. Как только фотоны начали попадать на ее поверхность, в пленке наночастицы абсорбировали фотоны, производя при этом электроны, проходящие через слой полимера PDDA, вырабатывающего слабый электрический ток. Как только ток доходил до клеточной мембраны нейронов, происходил процесс ее деполяризации, и начиналось распространение нервного сигнала, свидетельствующее о наличие в этой области пленки света.

Ранее учеными уже были достигнуты определенные успехи в области стимуляции нейронов через кремниевые интерфейсы. Однако той точности в детекции света и его интенсивности, какую предоставляет пленка с наночастицами, до сих пор не удавалось достичь. Искусственная сетчатка, созданная на базе открытия ученых, сможет даже воспроизводить цветовую насыщенность объектов, не говоря уже о высоком разрешении. Также сетчатка биологически совместима с тканями человека, благодаря использованию полимеров. Кремниевые же аналоги напротив, труднее приспособить для полноценной работы в теле человека. Еще одна революционная особенность искусственной сетчатки – то, что она не зависит от внешних источников питания и «включается» сразу же после попадания на нее света

22/08/2018, 14:47 1.6k Просмотров 293 Нравится

credit: Natalia Hutanu / TUM
Ученые не просто так называют графен «суперматериалом» . Несмотря на то, что он состоит из всего лишь одного слоя атомов углерода, это очень сильный, супер гибкий и сверхлегкий материал, который также проводит электричество и биодеградирует. Недавно международная команда исследователей нашла способ использовать графен для создания искусственной сетчатки глаза. Сетчатка представляет собой слой светочувствительных клеток во внутренней оболочке глаза, ответственные за преобразование изображения (электромагнитное излучение видимой части спектра) в нервные импульсы, которые мозг может интерпретировать. И если этот тонкий слой клеток не функционирует, то человек просто ничего не видит.

В настоящее время миллионы людей по всему миру страдают от заболеваний сетчатки, которые лишают их зрения. Чтобы помочь им увидеть снова, ученые несколько лет назад разработали искусственную сетчатку. Однако все существующие решения сложно назвать идеальными, поскольку имплантаты жесткие и плоские, поэтому изображение, которое они производят, часто выглядит размытым и искаженным. И хотя имплантаты достаточно хрупкие, они также могут повредить близлежащие ткани глаза.

Поэтому графен со всеми его уникальными свойствами может стать ключом к созданию лучшей искусственной сетчатки. Используя сочетание графена, дисульфида молибдена (другой двумерный материал), золота, оксида алюминия и нитрата кремния, исследователи из Техасского университета и Сеульского национального университета создали искусственную сетчатку, которая функционирует намного лучше, чем все существующие модели. Основываясь на лабораторных исследованиях и тестах на животных, ученые определили, что их искусственная сетчатка из графена является биосовместимой и способной имитировать функции человеческого глаза. Кроме этого, она лучше соответствует размерам естественной сетчатки человеческого глаза.

Искусственное зрение все больше становится реальностью как в науке, так и медицине - сочинители фантастических романов о таком и не помышляли. Летом прошлого года первые изготовленные из кремния искусственные сетчатки были имплантированы трем слепым пациентам. Все трое страдали почти полной потерей зрения, вызванной retinitis pigmentosa (RP), - болезнью глаз, повреждающей ночное и периферийное зрение. Они выписались из больницы на следующий после операции день.

Изобрели искусственную кремниевую сетчатку (ASR, от artificial silicon retina) основатели компании Optobionics братья Винсент и Алан Чоу. ASR представляет собой микросхему диаметром 2 мм и толщиной меньше человеческого волоса. На кремниевой пластине размещается порядка 3500 микроскопических солнечных элементов, которые преобразуют свет в электрические импульсы.

Микросхема, созданная для замены поврежденных фоторецепторов - светочувствительных элементов глаза, преобразующих в здоровом глазу свет в электрический сигналы, - работает от внешнего света, у нее нет батареек или проводов. Искусственная кремниевая сетчатка хирургическим способом имплантируется под сетчаткой пациента, в так называемом подсетчаточном пространстве, и генерирует визуальные сигналы, сходные с сигналами, производимыми биологическим фоторецепторным слоем.

В действительности ASR работает с фоторецепторами, еще не утратившими возможность функционировать. «Если микросхема сможет с ними взаимодействовать в течение некоторого продолжительного времени, значит, мы движемся к цели верной дорогой», - уверен Алан Чоу.

Люди, страдающие retinitis pigmentosa, постепенно утрачивают фоторецепторы. Вообще же это собирательное название многих заболеваний глаз, в результате которых происходит разрушение фоторецепторного слоя.

Возрастное возникновение пятен на роговице (AMD, от age-related macular degeneration), по мнению братьев Чоу, также поддается коррекции с помощью искусственной кремниевой сетчатки. Пятна на роговице являются следствием старения организма, но точная причина пока не известна. От подобных болезней страдают более 30 млн. населения планеты, они часто приводят к неизлечимой слепоте.

На сегодняшний день ASR не в состоянии справиться с глаукомой, связанной с повреждением нерва, и не помогает при диабете, приводящем к появлению рубцов на сетчатке. Бессильна искусственная сетчатка при сотрясениях и других мозговых травмах.

«Сейчас мы пытаемся понять, куда двигаться дальше, - рассказывают о своих планах братья Чоу. - Как только удастся определиться, можно будет поэкспериментировать с изменением параметров».

Естественное и искусственное зрение

Процесс «видения» можно сравнить с работой фотокамеры. В фотокамере световые лучи проходят через набор линз, фокусирующих изображение на пленке. В здоровом глазу лучи света проходят через роговицу и хрусталик, который фокусирует изображение на сетчатке, представляющей собой слой светочувствительных элементов, выстилающих заднюю поверхность глаза.

Пятно (macula) - это область сетчатки, получающая и обрабатывающая детальные изображения и посылающая их в мозг по зрительному нерву. Многослойное пятно обеспечивает изображениям, которые мы видим, высочайшую степень разрешения. Повреждено пятно - ухудшается зрение. Что делать в этом случае? Вводить ASR.

Тысячи микроскопических элементов ASR подсоединены к электроду, преобразующему входящие световые изображения в импульсы. Эти элементы стимулируют работу оставшихся работоспособных элементов сетчатки и вырабатывают визуальные сигналы, сходные с сигналами, генерируемыми здоровым глазом. «Искусственные» сигналы могут быть затем обработаны и посланы по зрительному нерву в мозг.

В экспериментах с животными в 80-х годах братья Чоу стимулировали ASR инфракрасным светом и регистрировали отклик сетчатки. Но животные, к сожалению, не могут говорить, поэтому неизвестно, что же, в сущности, происходило.

Более существенные результаты

Около трех лет назад братья собрали достаточное количество данных для того, чтобы обратиться в Управление питания и лекарственных препаратов за разрешением на проведение клинических экспериментов с участием человека. В качестве кандидатов были выбраны три пациента в возрасте от 45 до 75 лет, долгое время страдавших сетчаточной слепотой.

«Мы отобрали людей с наиболее серьезными нарушениями, так что если им удастся хоть что-то увидеть, результаты будут самыми обнадеживающими, - рассказал об эксперименте Алан Чоу. - Нам хотелось начать как можно скорее, мы тревожились только по поводу слишком поспешных выводов, которые могут быть сделаны в результате экспериментов».

Создатели искусственной сетчатки подчеркивают, что в настоящий момент их устройство не в состоянии помочь пациентам видеть так, как делают это здоровые люди.

«Можно будет говорить о блестящем результате, если плотность элементов окажется достаточной, чтобы пациенты могли видеть движущиеся объекты. В идеале им нужно различать формы и очертания предметов», - говорит Ларри Бланкеншип, управляющий директор компании Optobionics.

Отторжения имплантанта изобретатели не боятся. «Как только искусственная сетчатка имплантирована, вокруг нее образуется вакуум, это вполне предсказуемо», - считают Чоу. Уже можно утверждать, что искусственная кремниевая сетчатка - монументальное научное достижение, которое поможет навсегда избавиться от угрозы некоторых форм слепоты.