Главная · Метеоризм · Эффективное натуральное средство против вирусов, бактерий, дрожжей и плесневых грибов. Как защитить организм от бактерий и в каких случаях нужно это делать Вирусы против бактерий

Эффективное натуральное средство против вирусов, бактерий, дрожжей и плесневых грибов. Как защитить организм от бактерий и в каких случаях нужно это делать Вирусы против бактерий

Не кажется ли вам, дорогие комрады, что практически все появляющиеся новые заболевания являются вирусными? ВИЧ,новые штаммы гриппа свиной, птичий и прочие болезни являются вирусными инфекциями. Да и старые известные болезни вдруг стали вызывать эпидемии там, где их отродясь не было? Чикунгунья встречалась в Африке, Азии и на Индийском субконтиненте. И вдруг появились заболевшие в Европе и Америке. В 2007 году передача болезни была впервые зарегистрирована в Европе - в локализованной вспышке болезни на северо-востоке Италии. С тех пор вспышки болезни были зарегистрированы во Франции и Хорватии. Еще одна опасность, которая грозит человечеству, - это появление в мире нового коронавируса. Коронавирус - это шаровидной формы вирус с выростами, одна из его форм привела к эпидемии атипичной пневмонии в 2003 году. Начиная с осени 2012 года, и сейчас идет по нарастающей, появился суперновый коронавирус, который по своей геномной структуре отличается от того, что в нашей стране называли атипичной пневмонией. Эти примеры можно перечислять долго....

А теперь вспомним босоногое детство. Чем болели? Ну, понятно, корь, ветрянка и простуда. Только она называлась ангиной. И носила, как правило, бактериальный характер. А сейчас, почему-то в основном ОРВИ. Острое Респираторное ВИРУСНОЕ заболевание. То есть грипп. Да, и раньше болели гриппом. И эпидемии были. Вспомним хотя бы испанку. Но в моем детстве я не помню, чтобы закрывали детский сад на карантин. Да и школу не закрывали. Бывало, что при температуре -25 занятия отменяли. Это счастье то какое! В школу не надо, значит целый день на катке шайбу гоняли. И в институте не было карантина. А сейчас чуть ли не каждый год эпидемия гриппа. С введением карантина в школах и детсадах. С чего бы это? Вроде бы и лекарства стали лучше и числом поболее. Не то что мамино варенье малиновое да горчичники. А болеют больше и тяжелее. Почему?

А всё дело в том, что мы бесконтрольным и бессистемным применением антибиотиков нарушили свою микробиоту. Дело даже не в том, что стали появляться новые резистентные штаммы бактерий. Дело в том, что убивая бактерий без разбора мы уничтожаем и полезных для нас. Которые защищают нас от вирусов. Об этой опасности писала ещё в прошлом веке наша замечательная ученая Агния Аркадьевна Морова. О её работах я писал на АШ Она ещё тогда предсказала, что будут появляться новые медленно текущие смертельные вирусные инфекции. И ВИЧ появился при её жизни! Гениальное предсказание... Тогда на её работы не обратили особого внимания. Тем более, что она не публиковалась в зарубежных англоязычных научных журналах. Но в последнее время стало появляться всё больше публикаций, в которых её идеи находят подтверждение. Вот пример http://www.pnas.org/content/108/13/5354 Не буду переводить полностью, скажу в двух словах. Микробиота носоглотки защищает нас от вируса гриппа. Если же при лечении гриппа использовать антибиотики, то состояние только ухудшается. То есть убивая антибиотиками симбионтные микроорганизмы мы только помогаем вирусу гриппа свалить нас с ног. Вот статья из "Саенс" http://science.sciencemag.org/content/357/6350/498.full Суть та же самая. Только речь идет уже о кишечных бактериях. Метаболиты, которые образуются в результате деятельности кишечных бактерий, стимулируют выработку интерферона – белка, который подавляет размножение вируса. А мы их антибиотикам! То есть своих же помощников уничтожаем....

Как же работает эта защита? Начнем с того, что мы не хозяева планеты. Мы гости в мире вирусов и бактерий. Они появились на многие миллиарды лет раньше нас. И, скорее всего, нас также переживут, как пережили первых хордовых, динозавров и мамонтов. Многие миллиарды лет до нашего появления на планете царствовали вирусы. Или что-то на них похожее, типа прионов. Живыми их назвать язык не поворачивается. Но эти безмозглые твари научились копировать свой генетический материал и размножаться. На том, что им Бог послал в виде первичного бульона. И все разнообразие жизни пошло от этих крохотных, видимых только в электронный микроскоп частичек. Постепенно они стали эволюционировать и появились бактерии. Которым уже не стало хватать первичного бульона. И они научились питаться вирусами. А чего добру пропадать? Плавают тут разные куски белковых молекул... давай их на закуску. Справедливости ради надо сказать, что не только бактерии научились питаться вирусами. Но и некоторые вирусы оказались не прочь ими закусить. Они сохранились до сих пор. Называются бактериофаги. Кстати, лечение бактериофагами, рекламируемое ныне зарубежными клиниками, началось во времена СССР. Впервые их обнаружил в 1915 году британский бактериолог Фредерик Творт. Через два года учёный из Института Пастера Феликс Д"Эрель сделал доклад, в котором сообщил, что открыл «невидимый микроб», поражающий дизентерийную палочку. Он же впервые применил термин «бактериофаг», то есть «поедатель бактерий». Этим термином мы пользуемся и по сей день. Хотя впервые бактериофаги были обнаружены западными учеными, активно развиваться фаготерапия стала в СССР. В числе первопроходцев этого направления медицины был Георгий Элиава. Открытый им в 1920-е годы в Тбилиси институт, который занялся исследованиями бактериофагов для терапевтического применения, стал даже мировым лидером в этой области. Кстати, Феликс Д"Эрель тоже несколько лет проработал в этом институте, но после того, как Элиава был расстрелян как «враг народа» в 1930-х, француз поспешил покинуть СССР. Но бактериофаги это тема для отдельной статьи. Вернемся к нашим баранам бактериям и вирусам.

Кстати, не только человека, но и даже комаров можно защитить от вирусов при помощи бактерий. Есть такая нехорошая болезнь лихорадка Денге. От лихорадки Денге ежегодно страдают более 50 миллионов человек. Вирус распространяется желтолихорадочными комарами, а лекарство от него до сих пор не найдено - медики лишь снимают симптомы болезни и проводят поддерживающую терапию. Ученые заразили яйца самок комаров бактерией Wolbachia pipientis , которая подавляет действие на комаров почти всех вирусов. Биологи предположили, что свойства бактерии распространяются и на вирус Денге: если комары сами не смогут заразиться им, у них не получится передать его людям. В результате подобных действий число случаев заражения вирусом в австралийском городе Таунсвилл упало в 12,5 раза. Об этом говорится в статье, опубликованной в журнале Gates Open Research .

Получается интересная картина. Если мы имеем в организме определенные бактерии, то нам не страшны вирусы. Долгое время нашего развития так и было. Да, были вирусные инфекции. Но они были распространены в отдельных областях планеты, где местное население выработало к ним иммунитет. Или обладало таким набором бактерий, которые помогали справиться с вирусами. Не всем. Более слабые погибали, остальные получали иммунитет. То есть масштабных эпидемий было сравнительно немного. Только в случае резкого мутирования вируса, как это было с испанкой. А таких заболеваний как ВИЧ вообще не существовало. Они стали появляться тогда, когда люди стали уничтожать и менять свою микробиоту. Что и повлекло за собой всплеск вирусных заболеваний.

Поэтому сейчас стоит задача восстановить нормальную микробиоту. Другое дело, как узнать, какие бактерии помогают бороться с какими вирусами? Похоже, мы об этом никогда не узнаем. Так как под действием антибиотиков наши родные симбионтные бактерии либо исчезают, либо переходят в L-форму. Которая уже не дает нужных нам веществ. Надо сказать, что работы по бактериальной защите от вирусов ведутся во всем мире. Мы тоже по мере сил и возможностей в ней участвуем. На сегодняшний день доказано документально, что введение в организм человека симбионтных бактерий стрептококка приводит к резкому уменьшению вирусной нагрузки на организм. Вплоть до не определяемых показателей. Вот анализы человека до лечения.

А вот после лечения

Вы когда-нибудь задумывались зачем нужно было строить метро по всему миру почти двести лет назад? Ведь на поверхности не было транспортных пробок, а Генри Форд еще даже не запустил свой первый конвейер? Никто тогда и поверить не мог, что автомобиль станет доступен каждому, а метро уже было построено. А, возможно, его никто и не строил, а просто откопали?

Одним из интересных фактов, доказывающих что метро не строили, а откапывали является история строительства первого пневматического метро. Вот что говорят официальные источники по этому поводу.

В 1868 году компания "Пневмотранзит" во главе с изобретателем Альфредом Бичем начинает строить подземный тоннель для пневматических поездов.

Для постройки тоннеля он арендует подвал магазина одежды в Нью-Йорке, а работы ведутся ночью, так как официального разрешения от властей не было. Они убеждают всех, что строится маленький тоннель для пневмопочты. Для постройки они использовали, так называемый, проходческий щит Альфреда Бича, который соорудил сам изобретатель.

И уже через два года первые посетители зашли на подземную станцию.

Тоннель построили за очень короткий срок, всего за 2 года, за это время они пробурили 100 метров под землей, обложили все это кирпичом, построили подземную станцию с хорошей отделкой, установили 50 тонный компрессор и стали возить людей.

Но сроки слишком маленькие, даже по меркам современности. Илон Маск бы позавидовал такой скорости строительства. При том, что в основном работу делали ночью.

Станцию освещали кислородно-водородные газовые лампы, деревянная отделка, рояль, длина тоннеля 95 метров, за первый год работы метро перевезло 400 тыс. человек, потом Альфред все-таки получает разрешение на строительство такого метро под всем городом, но фондовый рынок падает, магазин горит, а про метро благополучно забывают.

Вспомнили про него только через 40 лет и то ненадолго. Тогда рабочие бродвейского метро случайно натолкнулись на этот тоннель, там находился проходческий щит, ржавые рельсы и вагончик.

Что не так в официальной версии:

Как можно было забыть за это время про такой грандиозный проект и даже потерять все чертежи и план тоннелей?

Как проходческий щит попал в подвал магазина, что за подвал должен быть с заездом под паровоз, скорее всего магазин был построен на готовом допотопном тоннеле.

Обнаружили уникальное сооружение прошлого века, почему не сделали музей - это ведь первое американское метро, обновили бы вагончики, было бы красиво и прибыльно, почему так быстро постарались забыть, щит в итоге пропал, вагончики тоже.

В Англии строителя первого метро, Брюнеля, не забывают, а его первые наброски очень напоминают американское метро, сделал он их еще до американского метро и американец тоже их видеть не мог, так как они никогда не публиковались. Как они задумали одно и тоже одновременно.

Какое может быть объяснение? В Америке могли найти реальный туннель с оборудованием, с компрессором, с вагончиками, расчистили старые тоннели, такая версия объясняет все странности:

и короткий срок строительства
и желание властей забыть о проекте.
А вот старейший Канадский тоннель, который используется как канализация, тоже напоминает первое забытое метро.

А в Лондоне такую канализацию построили в 19 веке и строили тоже как первое метро Нью-Йорка.

А вот фотографии 1904 года, открытие метро в Нью-Йорке.

Здесь бросается в глаза огромный тоннель и убогая тележка, 50 лет до этого Альфред Бич использовал вагоны почти современные, но в 1904 году они строят убогие тележки.

А вот план метрополитена, сложнейший современный проект.

А на втором фото мы видим как реализован этот проект, современный план и древняя каменная кладка. Опять сложные технологичные вещи идут рука об руку с какими-то отсталыми технологиями.

По фотографиям метро в Париже видно как откапывают старое и приспосабливают под новое. Опять такие же тоннели.

Возникает ощущение, что была зачистка старых тоннелей. Для фактической проходки щит должен быть диаметром внешней кладки кирпича а не внутренней.

В Москве с 1933 по 1935 построили целую линию, а сейчас несколько лет одну станцию строят, причём неглубокого залегания, на многих старых станциях арочные своды как в старинных зданиях. Первые станции красивые как дворцы.

Что же произошло с планетой, метро, статуи, пирамиды, церкви-приемники атмосферного электричества, а памяти нет.

ДРУГОЙ ВЗГЛЯД

Несмотря на очевидные ассоциации с японской военщиной, проект сингапурских биоинженеров во главе с Чу Лу По (Chueh Loo Poh), по их словам, был «вдохновлен самой природой». Впрочем, ученые говорят о известной способности микроорганизмов «ощущать» количество присутствующих поблизости представителей своего и других видов и действовать в соответствии с ним — о так называемом « чувстве кворума ».

Например, когда патогенная синегнойная палочка (Pseudomonas aeruginosa ) обнаруживает, что какие-то другие бактерии занимают «их» место и потребляют «их» питательные вещества, они начинают активно взаимодействовать друг с другом посредством химических сигналов, и в итоге коллективно вырабатывают и выбрасывают токсин пиоцин , выводящий соперников из игры. При этом сами палочки формируют плотную пленку, которая у людей приводит к инфекции дыхательных путей.

Чу Лу По и его коллеги решили развернуть это опасное оружие синегнойной палочки против нее самой — а в качестве его носителя избрали любимый объект генетиков, кишечную палочку (Escherichia coli ). Для этого исследователи выделили из P. aeruginosa

гены, ответственные за обнаружение других представителей своего вида, и внесли из в геном E. coli . Кроме того, E. coli была вооружена геном, производящим модифицированную версию пиоцина, токсичного для самой P. aeruginosa . Объединив эти гены в единую систему, ученые получили настоящего камикадзе: кишечная палочка, обнаружившая присутствие поблизости синегнойной палочки, приступает к массовому производству модифицированного пиоцина, превращаясь в живую бомбу замедленного действия. Вскоре в действие вступает еще один искусственно добавленный компонент, «ген самоубийства». Бактерия самоуничтожается, ее клеточные оболочки разрушаются — и в окружающую среду поступает смертельный для синегнойной палочки токсин.

Испытав своих генетических камикадзе, авторы показали, что такая E. coli при совместном культивировании с P. aeruginosa успешно уничтожает до 99% ее представителей. Заметим, что из этих цифр некоторые специалисты делают пессимистичные выводы: даже оставшийся процент синегнойной палочки вполне способен вызвать серьезную болезнь. В любом случае, прежде чем дело дойдет до практического использования этой элегантной схемы для лечения больных, требуется еще огромная работа. Прежде всего, стоит заменить условно-патогенную кишечную палочку на другой, более безопасный носитель, а также показать, насколько эффективным будет модифицированный пиоцин в борьбе с синегнойной палочкой, уже успевшей сформировать стойкую к воздействиям слизистую пленку — и насколько безопасен он для человеческого организма.

Со времен Дарвина известно, что мир - вековая арена борьбы за существование всего живого. Смерть рано или поздно губит все, что неспособно выдержать эту борьбу, эту конкуренцию с более совершенными, более приспособленными к жизни существами. Однако, пожалуй, сам Дарвин не подозревал, что и в мире, который находится за пределами человеческого зрения, среди мельчайших живых существ, среди микробов, бушует та же вековая борьба за существование. Но кто с кем борется? Какие виды оружия используются при этом? Кто оказывается побежденным и кто победителем?

На эти и подобные им вопросы ученые нашли ответы далеко не сразу. Долгое время в распоряжении исследователей были лишь отдельные разрозненные наблюдения.

Еще в 1869 году профессор Военно-медицинской академии Вячеслав Авксентьевич Манассеин заметил, что, если на питательной среде поселилась плесень, на ней никогда не растут бактерии. В то же время другой ученый, профессор Алексей Герасимович Полотебнев, использовал на практике наблюдение своего коллеги. Он успешно лечил гнойные раны повязками с зеленой плесенью, которую соскабливал с лимонных и апельсиновых корок.

Луи Пастер заметил, что обычно бациллы сибирской язвы хорошо растут на питательном бульоне, но, если в этот бульон попадут гнилостные бактерии, они начинают быстро размножаться и "забивают" бациллы сибирской язвы.

Илья Ильич Мечников установил, что гнилостные бактерии, в свою очередь, подавляются бактериями молочнокислыми, образующими вредную для них молочную кислоту.

Известно было и еще несколько фактов такого же рода. Этого оказалось достаточно, чтобы зародилась мысль использовать борьбу микроорганизмов друг с другом в целях лечения заболеваний. Но как? И каких?

Вот если бы заглянуть в жизнь микромира, рассмотреть, что делают микробы в естественной обстановке, а не в искусственно выращенной лабораторной культуре. Ведь в одном грамме почвы, взятой где-нибудь в лесу или на огороде, содержится несколько тысяч спор плесневых грибов, несколько сотен тысяч других грибов-актиномицетов, миллионы бактерий различных видов, не говоря об амебах, инфузориях и других животных.

И, конечно, в таких тесных сообществах микробы вступают в самые различные взаимоотношения друг с другом. Здесь могут наблюдаться и случаи взаимопомощи - симбиоза, и ожесточенная борьба представителей разных микробных видов, так называемый естественный антагонизм микробов, и просто безразличное отношение друг к другу.

Но как это увидеть?!

Киев. 1930 год. Опыт за опытом ставил доцент Киевского университета Николай Григорьевич Холодный, пытаясь найти "способ изучения микроорганизмов в их естественной обстановке". Такой способ им уже найден для микробов, обитающих в водной среде. Но как рассмотреть жизнь микробов в почве?

Собрав в окрестностях Киева образцы почв, Холодный по нескольку дней не выходит из своей лаборатории. К тому же университетская лаборатория - его дом. Квартира, где Николай Григорьевич жил раньше, была разрушена артиллерийским снарядом еще в 1919 году. С тех пор qh поселился в лаборатории. Равнодушный к материальным благам и удобствам жизни, он даже считает, что устроился неплохо: можно работать в любое время суток.

Сейчас Холодный уже известный исследователь железобактерий, "крестный" нескольких дотоле науке неведомых видов из рода Лептотрикс. Пройдет несколько лет, и две его статьи, "Почвенная камера, как метод исследования микрофлоры" и "Метод непосредственного изучения почвенной микрофлоры", положат начало новому направлению в микробиологии. "Войны микробов" в их естественном состоянии станут предметом прямого изучения. Но пока пробуется один прием за другим, опыт следует за опытом. Многое из найденного Холодного не удовлетворяет, сложно. Во всех своих методических разработках он ищет простоты. Способ должен быть таким, чтобы им легко мог воспользоваться любой исследователь. Вот, например, острым ножом ученый делает вертикальный разрез в почве и вставляет в него четырехугольное стерилизованное стеклышко, стекло закапывается. Со временем оно покрывается почвенными растворами, мелкими частичками почвы, среди которых поселятся обитающие в ней микроорганизмы. Теперь остается только извлечь стекло и после специальной обработки рассмотреть его под микроскопом. Приставшие к стеклу частички почвы и микробы сохраняются в их естественном расположении, и, таким образом, можно наблюдать отдельные "кадры" из грандиозного фильма о жизни микробов в почве. Проще, кажется, не придумаешь.

Действительно, это было то, что так упорно искал Холодный. Он видел, как мир микробов жил своей бурной и тайной жизнью. Ежесекундно здесь шла ожесточенная борьба, приводящая к смерти одних обитателей и усиленному размножению других.

Теперь уже ученые знают, каким оружием пользуются различные виды микробов в своих непрекращающихся "войнах". Это не обязательно прямое уничтожение, как делают амебы и инфузории с бактериями. Очень часто микробы применяют и другие методы воздействия на своих врагов. Винные дрожжи, например, выделяют спирт, а уксуснокислые бактерии - уксусную кислоту. Такое "химическое оружие" угнетает развитие большинства других видов микробов, являясь для них ядом. Это как бы оружие против всех, кто посмеет приблизиться.

Однако в арсенале некоторых микроорганизмов встречается и оружие "персонального" прицела. Оно направлено только против некоторых видов микробов, угнетает только их и не поражает все остальные микроорганизмы. Как правило, такие вещества вырабатываются специально для нападения и защиты против микробов, с которыми первым приходится чаще всего сталкиваться в своей жизни. Вещества эти получили название антибиотиков.

Особенно много антибиотиков вырабатывают почвенные микроорганизмы. Это и понятно - ведь в почве отдельные виды микробов образуют целые скопления. Создав вокруг такого "поселения" зону антибиотической защиты, микробы находятся за ней, как за крепостной стеной. Причем она служит им не только надежной защитой, но в какой-то степени даже средством наступления, так как по мере роста колонии "крепостные стены" раздвигаются и его обитатели расширяют свои владения. Кстати, отсюда понятно, почему не вырабатывают антибиотиков водные микроорганизмы. В воде крепости не создашь, да и соседи здесь непостоянные. Тут нужно оружие против всех, кто посмеет приблизиться, - допустим, какая-нибудь кислота.

Близкое знакомство с почвенной микрофлорой показало, что почвенных микробов-антагонистов очень много и большинство из них для решения основного вопроса борьбы за существование "жить или не жить" вырабатывает антибиотические вещества, убивающие врагов.

Многолетние систематические исследования советского ученого Николая Александровича Красильникова показали, что особенно широко распространены в почве различные виды плесневых грибов и так называемые лучистые грибы - актиномицеты. И те и другие вырабатывают антибиотики.

У них это, пожалуй, единственное средство защиты против бактерий, для которых грибы являются лакомой пищей. Кстати, сами бактерии тоже вырабатывают антибиотики, но уже против почвенных амеб и инфузорий, охотящихся за ними. Этот интересный факт был впервые установлен профессором Александром Александровичем Имшенецким.

Итак, казалось бы, все просто. Микробов, вырабатывающих антибиотики, много. Остается только отобрать у них это оружие, выделить его в чистом виде и применять как лекарство против болезнетворных бактерий. Но не тут-то было!

Действительно, антибиотиков много. Так, только из почвы Подмосковья в лаборатории профессора Георгия Францевича Гаузе было выделено в чистую культуру. 556 штаммов почвенных грибов, 234 из них оказались продуцентами самых разных антибиотиков. Большая часть штаммов (56 процентов) вырабатывала противобактериальные антибиотики; 23 процента были универсалы: их антибиотики подавляли и рост бактерий и рост других грибов; остальные владели оружием лишь против своих собратьев - грибов иных видов.

Богатый набор продуцентов антибиотиков имеет и почва других мест. Однако здесь повторяется история с "магической пулей" Эрлиха: антибиотики оказываются токсичными не только для возбудителей болезней, но и для организма человека.

С одной стороны, в природе великое множество антибиотиков, но использовать в качестве лекарственных препаратов можно лишь считанные единицы. Впрочем, это стало известно уже после того, как в поиски новых средств борьбы с болезнетворными микробами вмешался случай. И хотя ученые в своей работе на случай никогда не рассчитывают, а гипотезы и пути исследований строятся, исходя из уже известных закономерностей, в истории науки можно найти немало примеров, когда дальнейшее развитие определяла счастливая случайность. Но случай не слеп. "Судьба, - как сказал Пастер, - одаривает только подготовленные умы".

Так было и на этот раз.

Народный антибиотик – эхинацея – особенно эффективен при воспалении горла и в самом начале простуды

Народные средства на протяжении тысячелетий выполняли роль антибиотиков. При многих заболеваниях, причиной которых является рост бактерий, даже сейчас эффективны именно травы. Ведь за последние десятилетия возникло множество устойчивых к антибиотикам бактерий (возникли резистентные штаммы). Антибиотик уничтожает большинство бактерий, но не все. Оставшиеся имеющие более сильное сопротивление бактерии начинают сильно размножаться, постепенно создаются более сильные и устойчивые к антибиотикам колонии.

Бактериям трудно приспособиться к народным антибиотикам

Знаете ли вы, что больницы в Австралии используют эфирное масло эвкалипта в качестве дезинфицирующего средства? Оказывается, это народное средство является эффективным антибиотиком в отношении метициллин-резистентного
золотистого стафилококка. Вы когда-нибудь задумывались, почему народные средства, которые существуют на протяжении сотен тысяч лет, все еще способны функционируют как антибиотики? Почему они не потеряли свою эффективность, в то время как созданные человеком антибиотики перестали быть активными в отношении многих бактерий? Дело в том, что народные антибиотики состоят из сотен различных молекул в разных пропорциях. Бактериям гораздо проще приспосабливаться к синтетическому антибиотику, чем к экстракту целого растения.

Народные антибиотики долго использовали народные целители для лечения простуды и гриппа, очищения ран от инфекции и ускорения заживления ран. В наше время стало понятно, что для устойчивых к синтетическим антибиотикам бактерий нужна альтернатива – народные антибиотики.

Чем отличается народный антибиотик от синтетического?

Антибиотик – это препарат, который используется для лечения инфекций, вызванных бактериями и другими микроорганизмами. Первоначально антибиотик был веществом, действующим на один микроорганизм, который избирательно подавлял рост другого. Синтетические антибиотики обычно химически связаны с народными антибиотиками.

Травы в своем составе имеют антибиотики, которые защищают их корневые системы. Многие народные средства и травы действуют как антибиотики: мед, акация, алоэ, чеснок, лук, корень солодки, имбирь, шалфей, эхинацея, эвкалипт, желтокорень канадский, экстракт семян грейпфрута, можжевельник, полынь, лишайник уснея и многие другие.

Большинство синтетических антибиотиков представляет собой отдельное изолированное химическое вещество (пенициллин, тетрациклин и т.д.). Поэтому бактериям проще приспособиться к антибиотикам. В противоположность, народные антибиотики являются намного более сложными. К примеру, чеснок содержит более 33 соединений серы, 17 аминокислот и 10 других соединений; тысячелистник – более 120 соединений. Различные соединения в травах работают сообща, поэтому результат борьбы с бактериями гораздо лучше.

Алоэ – народный антибиотик против стафилококка и вирусов герпеса

Листья алоэ активны в отношении золотистого стафилококка, синегнойной палочки, вируса простого герпеса 1 и 2 типов. Наружное применение алоэ и меда самое эффективное для лечения ожогов, ускорения заживления ран и профилактики инфекции. Народный антибиотик алоэ применяется просто: нарежьте листья свежего растения, чтобы получить сок, а затем наносите гель алоэ на рану или ожог до полного выздоровления.

Чеснок – антибиотик против молочницы

Чеснок активен против туберкулеза, шигеллы дизентерии, золотистого стафилококка, синегнойной палочки, молочницы, кишечной палочки, стрептококка, сальмонеллы, возбудителя кампилобактериоза, протея (Protues merbilis), простого герпеса, гриппа B, ВИЧ и др. Чеснок рекомендуется применять в свежем виде, в капсулах, как настойку или добавлять в блюда. Начинать нужно с малых доз и постепенно увеличивать. Сырой чеснок может вызвать расстройство желудка и даже рвоту, поэтому нужно соблюдать осторожность. Небольшие, частые дозы этого народного антибиотика «работают» лучше, чем большие дозы (1/4 ч.л. сока чеснока при необходимости). Капсулы также могут лучше переноситься и их легче принимать. Совместное применение чеснока с разжижающими кровь препаратами усиливает действие последних.

Эхинацея – народный антибиотик против стафилококка и туберкулеза

Эхинацея активна в отношении золотистого стафилококка, стрептококка, микобактерии туберкулеза, аномальных клеток. Этот народный антибиотик особенно активен для Пап мазков, при воспалении горла и в самом начале простуды. Для лечения горла и простуды рекомендуется использовать настойку эхинацеи, по 30 капель с водой каждый час. Также вкусен и полезен чай с эхинацеей.

Солодка – народный антибиотик против стрептококка и стафилококка

Солодка активна против малярии, туберкулеза, сенной палочки, золотистого стафилококка, стрептококка, сальмонеллы, кишечной палочки, молочницы, вибриона холеры, дерматофита (Trichophyton mentagrophytes), возбудителя руброфитии, токсокароза. Солодка является мощным стимулятором иммунной системы и антибиотиком. Этот народный антибиотик хорошо работает с другими травами. Побочными эффектами солодки могут быть: высокое давление крови и задержка воды в организме. Полезен такой чай с солодкой: 1/2 ч.л. заварить 1 стаканом кипятка в течение 15 минут, принимать до трех раз в день.

В некоторых случаях народные антибиотики оказываются более эффективными, чем промышленные. В то время как к последним бактерии развивают резистентность, народные средства и травы остаются по-прежнему эффективными. Природа создала все необходимое для лечения человека. Важно пополнять знания о народных антибиотиках, разрабатывать схемы лечения.