Главная · Дисбактериоз · Эпигенетическая модификация. Эпигенетика: невидимый командир генома. Трансгенеративные эпигенетические эффекты

Эпигенетическая модификация. Эпигенетика: невидимый командир генома. Трансгенеративные эпигенетические эффекты

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Алексей Ржешевский Александр Вайсерман

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваша мама и бабушка. Ваши клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. Во многом благодаря клеточной памяти мы не похожи на шимпанзе, хотя имеем с ним примерно одинаковый состав генома. И эту удивительную особенность наших клеток помогла понять наука эпигенетика.

Эпигенетика — довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-" означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.


Эпигенетические процессы реализуются на нескольких уровнях. Метилирование действует на уровне отдельных нуклеотидов. Следующий уровень — это модификация гистонов, белков, участвующих в упаковке нитей ДНК. От этой упаковки также зависят процессы транскрипции и репликации ДНК. Отдельная научная ветвь — РНК-эпигенетика — изучает эпигенетические процессы, связанные с РНК, в том числе метилирование информационной РНК.

Управление мутацией

Развитие эпигенетики как отдельного направления молекулярной биологии началось в 1940-х. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта», объясняющую процесс формирования организма. Долгое время считалось, что эпигенетические превращения характерны лишь для начального этапа развития организма и не наблюдаются во взрослом возрасте. Однако в последние годы была получена целая серия экспериментальных доказательств, которые произвели в биологии и генетике эффект разорвавшейся бомбы.

Переворот в генетическом мировоззрении произошел в самом конце прошлого века. Сразу в нескольких лабораториях был получен ряд экспериментальных данных, заставивших генетиков сильно призадуматься. Так, в 1998 году швейцарские исследователи под руководством Ренато Паро из Университета Базеля проводили эксперименты с мухами дрозофилами, у которых вследствие мутаций был желтый цвет глаз. Обнаружилось, что под воздействием повышения температуры у мутантных дрозофил рождалось потомство не с желтыми, а с красными (как в норме) глазами. У них активировался один хромосомный элемент, который и менял цвет глаз.


К удивлению исследователей, красный цвет глаз сохранялся у потомков этих мух еще в течение четырех поколений, хотя они уже не подвергались тепловому воздействию. То есть произошло наследование приобретенных признаков. Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие сам геном, могут закрепляться и передаваться следующим поколениям.

Но, может, такое бывает только у дрозофил? Не только. Позже выяснилось, что у людей влияние эпигенетических механизмов тоже играет очень большую роль. Например, была выявлена закономерность, что предрасположенность взрослых людей к диабету 2-го типа может во многом зависеть от месяца их рождения. И это при том, что между влиянием определенных факторов, связанных со временем года, и возникновением самого заболевания проходит 50−60 лет. Это наглядный пример так называемого эпигенетического программирования.

Что же может связывать предрасположенность к диабету и дату рождения? Новозеландским ученым Питеру Глюкману и Марку Хансону удалось сформулировать логическое объяснение этого парадокса. Они предложили «гипотезу несоответствия» (mismatch hypothesis), согласно которой в развивающемся организме может происходить «прогностическая» адаптация к условиям обитания, ожидающимся после рождения. Если прогноз подтверждается, это увеличивает шансы организма на выживание в мире, где ему предстоит жить. Если нет — адаптация становится дезадаптацией, то есть болезнью.


К примеру, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день». Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек после рождения, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни.

Опыты, проведенные в 2003 году американскими учеными из Дюкского университета Рэнди Джиртлом и Робертом Уотерлендом, уже стали хрестоматийными. Несколькими годами ранее Джиртлу удалось встроить искусственный ген обычным мышам, из-за чего те рождались желтыми, толстыми и болезненными. Создав таких мышей, Джиртл с коллегами решили проверить: нельзя ли, не удаляя дефектный ген, сделать их нормальными? Оказалось, что можно: они добавили в корм беременным мышам агути (так стали называть желтых мышиных «монстров») фолиевую кислоту, витамин В12, холин и метионин, и в результате этого появилось нормальное потомство. Пищевые факторы оказались способными нейтрализовать мутации в генах. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, сами рождали нормальных мышей, хотя питание у них было уже обычное.


Метильные группы присоединяются к цитозиновым основаниям, не разрушая и не изменяя ДНК, но влияя на активность соответствующих генов. Существует и обратный процесс — деметилирование, при котором метильные группы удаляются и первоначальная активность генов восстанавливается.

Можно уверенно сказать, что период беременности и первых месяцев жизни наиболее важен в жизни всех млекопитающих, в том числе и человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни».

Судьба по наследству

Наиболее изученный механизм эпигенетической регуляции активности генов — процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Метилирование может влиять на активность генов несколькими способами. В частности, метильные группы могут физически препятствовать контакту фактора транскрипции (белка, контролирующего процесс синтеза информационной РНК на матрице ДНК) со специфичными участками ДНК. С другой стороны, они работают в связке с метилцитозин-связывающими белками, участвуя в процессе ремоделирования хроматина — вещества, из которого состоят хромосомы, хранилища наследственной информации.

В ответе за случайность

Почти все женщины знают, что во время беременности очень важно потреблять фолиевую кислоту. Фолиевая кислота вместе с витамином В12 и аминокислотой метионином служит донором, поставщиком метильных групп, необходимых для нормального протекания процесса метилирования. Витамин В12 и метионин почти невозможно получить из вегетарианского рациона, так как они содержатся преимущественно в животных продуктах, поэтому разгрузочные диеты будущей мамы могут иметь для ребенка самые неприятные последствия. Не так давно было обнаружено, что дефицит в рационе этих двух веществ, а также фолиевой кислоты может стать причиной нарушения расхождения хромосом у плода. А это сильно повышает риск рождения ребенка с синдромом Дауна, что обычно считается просто трагической случайностью.
Также известно, что недоедание и стресс в период беременности меняет в худшую сторону концентрацию целого ряда гормонов в организме матери и плода — глюкокортикоидов, катехоламинов, инсулина, гомона роста и др. Из-за этого у зародыша начинают происходить негативные эпигенетические изменения в клетках гипоталамуса и гипофиза. Это чревато тем, что малыш появится на свет с искаженной функцией гипоталамо-гипофизарной регуляторной системы. Из-за этого он будет хуже справляться со стрессом самой различной природы: с инфекциями, физическими и психическими нагрузками и т. д. Вполне очевидно, что, плохо питаясь и переживая во время вынашивания, мама делает из своего будущего ребенка уязвимого со всех сторон неудачника.

Метилирование участвует во многих процессах, связанных с развитием и формированием всех органов и систем у человека. Один из них — инактивация X-хромосом у эмбриона. Как известно, самки млекопитающих обладают двумя копиями половых хромосом, обозначаемых как X-хромосома, а самцы довольствуются одной X и одной Y-хромосомой, которая значительно меньше по размеру и по количеству генетической информации. Чтобы уравнять самцов и самок в количестве генных производимых продуктов (РНК и белков), большинство генов на одной из X-хромосом у самок выключается.


Кульминация этого процесса происходит на стадии бластоцисты, когда зародыш состоит из 50−100 клеток. В каждой клетке хромосома для инактивации (отцовская или материнская) выбирается случайным образом и остается неактивной во всех последующих генерациях этой клетки. С этим процессом «перемешивания» отцовских и материнских хромосом связан тот факт, что женщины намного реже страдают заболеваниями, связанными с X-хромосомой.

Метилирование играет важную роль в клеточной дифференцировке — процессе, благодаря которому «универсальные» эмбриональные клетки развиваются в специализированные клетки тканей и органов. Мышечные волокна, костная ткань, нервные клетки — все они появляются благодаря активности строго определенной части генома. Также известно, что метилирование играет ведущую роль в подавлении большинства разновидностей онкогенов, а также некоторых вирусов.

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью и другими внешними факторами.

Данные, хорошо подтверждающие этот вывод, были получены в начале этого века американскими и европейскими исследователями. Ученые обследовали пожилых голландцев, родившихся сразу после войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944−1945 годов был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год или два позднее (или ранее).


Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, было заметно понижено метилирование гена инсулиноподобного фактора роста (ИФР), из-за чего количество ИФР в крови повышалось. А этот фактор, как хорошо известно ученым, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче.

Позднее американский ученый Ламбер Люмэ обнаружил, что и в следующем поколении дети, родившиеся в семьях этих голландцев, также появлялись на свет с ненормально малым весом и чаще других болели всеми возрастными болезнями, хотя их родители жили вполне благополучно и хорошо питались. Гены запомнили информацию о голодном периоде беременности бабушек и передали ее даже через поколение, внукам.

Гены не приговор

Наряду со стрессом и недоеданием на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд.

Самый яркий и негативный пример — это, пожалуй, бисфенол-А, уже много лет применяющийся в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится в некоторых видах пластиковой тары — бутылок для воды и напитков, пищевых контейнеров.


Отрицательное воздействие бисфенола-А на организм заключается в способности «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК. Биологи из Гарвардской медицинской школы обнаружили способность бисфенола-А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Их коллеги из Колумбийского университета обнаружили способность бисфенола-А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам, женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером, покладистыми и спокойными.

К счастью, существуют продукты, оказывающие положительное влияние на эпигеном. Например, регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нем содержится определенное вещество (эпигаллокатехин-3-галлат), которое может активизировать гены-супрессоры (подавители) опухолевого роста, деметилируя их ДНК. В последние годы популярен модулятор эпигенетических процессов генистеин, содержащийся в продуктах из сои. Многие исследователи связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.

эпигенетические проявления могут передаваться от одного поколения к другому .

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Бориса Фёдоровича Ванюшина и Геннадия Дмитриевича Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b - это de novo метилтрансферазы, которые осуществляют формирование профиля метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии.

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование , сумоилирование. Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать своё модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин - это комплекс ДНК с белками, прежде всего, с белками-гистонами . Гистоны формируют нуклеосому , вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов . Хроматин, свободный от нуклеосом, называется открытым хроматином . Ремоделирование хроматина - это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.

Прионы

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA) . МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3′-нетранслируемым участком мРНК.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . В настоящее время разрабатывается эпигенетическая терапия , направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны) . Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене . Было показано, что семейство белков цитозин-дезаминаз APOBEC/AID принимает участие как в генетической, так и в эпигенетической наследственности, используя схожие молекулярные механизмы. У многих организмов было обнаружено более 100 случаев трансгенеративных эпигенетических явлений .

Эпигенетические эффекты у человека

Геномный импринтинг и связанные с ним заболевания

Некоторые заболевания человека связаны с

Маркус Пембри (Marcus Pembrey ) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путём изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.

4612 0

В последние годы медицинская наука все чаще переключает свое внимание с изучения генетического кода на таинственные механизмы, при помощи которых ДНК реализовывает свой потенциал: упаковывается и взаимодействует с протеинами наших клеток.

Так называемые эпигенетические факторы наследуемы, обратимы и играют колоссальную роль в сохранении здоровья целых поколений.

Эпигенетические изменения в клетке могут запускать рак, неврологические и психические заболевания, аутоиммунные нарушения – неудивительно, что эпигенетика приковывает внимание врачей и исследователей из разных областей.

Недостаточно, чтобы в ваших генах была закодирована правильная последовательность нуклеотидов. Экспрессия каждого гена – это невероятно сложный процесс, который требует идеальной координации действий сразу нескольких молекул-участников.

Эпигенетика создает для медицины и науки дополнительные проблемы, в которых мы только начинаем разбираться.

Каждая клеточка нашего тела (за немногими исключениями) содержит одну и ту же ДНК, подаренную родителями. Тем не менее, не все части ДНК могут одновременно быть активными. В клетках печени работают одни гены, в клетках кожи другие, в нервных клетках третьи – именно поэтому наши клетки разительно отличаются друг от друга и имеют собственную специализацию.

Эпигенетические механизмы гарантируют, что в клетке определенного типа будет работать код, присущий только этому типу.

На протяжении человеческой жизни те или иные гены могут «спать» или внезапно активироваться. На эти малопонятные изменения влияют миллиарды жизненных событий – переезд в новую местность, развод с женой, посещение спортзала, похмелье или испорченный бутерброд. Практически все события в жизни, большие и маленькие, способны отразиться на активности тех или иных генов внутри нас.

Определение эпигенетики

На протяжении многих лет слова «эпигенезис» и «эпигенетика» использовалось в самых разных областях биологии, и лишь сравнительно недавно ученые пришли к консенсусу, установив их окончательное значение. Только в 2008 году на встрече в Колд-Спринг-Харбор с путаницей было покончено раз и навсегда – было предложено официальное определение эпигенетики и эпигенетических изменений.

Эпигенетические изменения - это наследуемые изменения в экспрессии генов и фенотипе клетки, которые не затрагивают последовательности самой ДНК. Под фенотипом понимают всю совокупность характеристик клетки (организма) – в нашем случае это и структура костной ткани, и биохимические процессы, интеллект и поведение, оттенок кожи и цвет глаз и т.д.

Конечно, фенотип организма зависит от его генетического кода. Но чем дальше ученые углублялись в вопросы эпигенетики, тем очевиднее становилось, что некоторые характеристики организма наследуются через поколения без изменений генетического кода (мутаций).

Для многих это стало откровением: организм может меняться без изменения генов, и передавать эти новые черты потомкам.

Эпигенетические исследования последних лет доказали, что факторы окружающей среды – проживание среди курильщиков, постоянные стрессы, неправильное питание – могут привести к серьезным сбоям в функционировании генов (но не в их структуре), и что эти сбои легко передаются будущим поколениям. Хорошая новость в том, что они обратимы, и в каком-то N-ном поколении могут раствориться без следа.

Чтобы лучше понять силу эпигенетики, представим себе нашу жизнь в виде длинного кино.

Наши клетки – актеры и актрисы, а наша ДНК – это заранее подготовленный сценарий, в котором каждое слово (ген) дает актерскому составу нужные команды. В этой картине эпигенетика – режиссер. Сценарий может быть одним и тем же, но режиссер наделен властью удалять определенные сцены и фрагменты диалогов. Так и в жизни, эпигенетика решает, что и как скажет каждая клеточка нашего огромного тела.

Эпигенетика и здоровье

Метилирование, изменения в белках-гистонах или нуклеосомах («упаковщиках ДНК») могут наследоваться и приводить к болезням.

Наиболее изученным аспектом эпигенетики является метилирование. Это процесс присоединения метильных (СН3-) групп к ДНК.

Обычно метилирование влияет на транскрипцию генов – копирование ДНК на РНК, или первый шаг в репликации ДНК.

Исследование 1969 года впервые показало, что метилирование ДНК способно изменить долговременную память индивидуума. С того момента роль метилирования в развитии многочисленных заболеваний стала более понятной.

Заболевания иммунной системы

Собранные за последние годы факты говорят нам о том, что утрата эпигенетического контроля над сложными иммунными процессами может привести к аутоиммунным заболеваниям. Так, аномальное метилирование в Т-лимфоцитах наблюдают у людей, страдающих волчанкой – воспалительным заболеванием, при котором иммунная система поражает органы и ткани хозяина.

Другие ученые уверены, что метилирование ДНК – это истинная причина развития ревматоидного артрита.

Нейропсихиатрические заболевания

Некоторые психические болезни, расстройства аутистического спектра и нейродегенеративные заболевания связаны с эпигенетическим компонентом. В частности, с ДНК-метилтрансферазами (DNMT) – группой ферментов, передающих метильную группу на нуклеотидные остатки ДНК.

Уже практически доказана роль метилирования ДНК в развитии болезни Альцгеймера. Крупное исследование выявило, что даже при отсутствии клинических симптомов гены нервных клеток у больных, склонных к болезни Альцгеймера, метилированы иначе, нежели в нормальном мозге.

Теория о роли метилирования в развитии аутизма была предложена давно. Многочисленные вскрытия с изучением мозга больных людей подтверждают, что в их клетках недостаточно протеина MECP2 (метил- CpG-связывающий белок 2). Это исключительно важная субстанция, связывающая и активирующая метилированные гены. В отсутствие MECP2 нарушается работа головного мозга .

Онкологические заболевания

Достоверно известно, что рак зависит от генов. Если до 80-х годов полагали, что дело только в генетических мутациях, то теперь ученые знают о роли эпигенетических факторов в возникновении, прогрессировании рака, и даже в его устойчивости к лечению.

В 1983 году рак стал первой болезнью человека, которую связали с эпигенетикой. Тогда ученые обнаружили, что клетки колоректального рака гораздо меньше метилированы, чем нормальные клетки кишечника. Нехватка метильных групп приводит к нестабильности в хромосомах, и запускается онкогенез. С другой стороны, избыток метильных групп в ДНК «усыпляет» некоторые гены, ответственные за подавление рака.

Поскольку эпигенетические изменения обратимы, то дальнейшие исследования открыли дорогу к инновационной терапии рака.

В оксфордском журнале Carcinogenesis от 2009 года ученые писали: «Тот факт, что эпигенетические изменения, в отличие от генетических мутаций, потенциально обратимы и могут быть восстановлены до нормального состояния, делает эпигенетическую терапию перспективной опцией».

Эпигенетика все еще является молодой наукой, но благодаря многогранному влиянию эпигенетических изменений на клетки, ее успехи уже сегодня поражают воображение. Жаль, что не ранее чем через 30-40 лет наши потомки смогут полностью осознать, как много она значит здоровья человечества.

: магистр фармации и профессиональный медицинский переводчик

Наука

Что если ваше решение сегодня съесть еще один пакет чипсов или выкурить еще одну сигарету может повлиять не только на ваше здоровье, но и на здоровье ваших детей? Более того, что если ваш образ жизни влияет на здоровье ваших детей, ваших внуков и правнуков? Как оказалось, от нашего повседневного выбора зависит намного больше, чем мы себе представляли.

Традиционный взгляд на ДНК заключается в том, что она выражает себя через наши гены, которые помогают нам выживать, размножаться, развиваться, а также, что ДНК – это постоянная величина, заложенная природой на протяжении многих тысячелетий. Теперь, однако, представляется, что условия окружающей среды, такие как стресс, питание и окружение оказывают влияние на то, как ведет себя не только наша ДНК, но и ДНК наших детей, даже если они еще только в проекте.

Все это относится к сравнительно новой науке, которая называется эпигенетика. Ниже мы рассмотрим пять самых значимых открытий эпигенетики, а также что они означают для нашего здоровья.

5. То, что ДНК может сделать намного важнее, чем ее структура

ДНК – это важная структура, однако, она не ответственна за все. Подобные надзорные функции принадлежат эпигеному. Как описывал Джон Клауд (John Cloud), эпигеном берет бразды правления в верхней части генома и говорит каждому гену работать или нет посредством эпигенетических маркеров. Это основа эпигенетики, изучение изменений в поведении наших генов, которые могут быть переданы, фактически не изменяя наш генетический код. Потенциально, это означает, что наш организм может обладать биологическими реакциями на условия окружающей среды, которые позитивно или негативно сказываются на нашем здоровье, не меняя при этом ДНК.

К примеру, Клауд предлагает проиллюстрировать эпигенетику, рассмотрев близнецов, которые обладают идентичным генетическим материалом. Почему же тогда близнецы не страдают от одних и тех же заболеваний, таких как, к примеру, астма или психические расстройства? Играет ли в данном случае роль эпигенетика? В настоящее время именно этими вопросами и занята наука. Кроме того, исследователи изучают, существуют ли лекарственные препараты или методы, которые можно использовать для того, чтобы в лучшую сторону изменить генетическое поведение.

4. Когда дело доходит до развития заболевания, эпигенетика задает тон

Хорошо, что можно использовать ДНК в качестве козла отпущения, однако, есть и другие факторы, увеличивающие наши шансы на развитие того или иного заболевания, среди которых: экологические проблемы, плохое питание, социальные взаимодействия и воздействия окружающей среды, которые способствуют эпигенетическим изменениям.

Как отмечает Сара Бальдауф (Sarah Baldauf), специалист по эпигенетике, выражение эпигенетических изменений в более позднем возрасте может быть причиной возрастных заболеваний, таких, как, к примеру, болезнь Альцгеймера. "С возрастом, стареют и наши гены, поэтому они могут просто отключиться, что и приводит к болезни", - говорит она. Что это может означать? Исследователи надеются разработать препараты, которые будут управлять эпигенетическими изменениями и которые защитят нас или остановят болезнь.

Далее она приводит один пример работы исследовательской команды, которая обнаружила эпигенетические изменения у мышей, приведшие к развитию у грызунов волчанки. Однако, им удалось полностью вылечить мышей, создав лекарственный препарат, который вызвал эпигенетические изменения.

3. Эпигенетика тесно связана с развитием рака

Ранее раковые заболевания уже были включены в список потенциальных болезней, связанных с эпигенетическими изменениями. Эта тема заслуживает дальнейшего обсуждения из-за вероятности ее близкой связи с наукой.

Исследователи рассматривают возможность того, что изменения в эпигеноме вызывают рост опухоли. Некоторое время назад эксперты полагали, что рак связан либо с мутациями, из-за которых наши клетки перестают нас защищать либо с потерей этой защиты при делении клеток. Это правда, однако, существует и третья причина. Опухоли могут расти, потому что хорошие клетки с отличной защитой получают эпигенетический сигнал не выполнять свою работу. С помощью лекарственных препаратов и даже меняя образ жизни, мы, возможно, в будущем сможем изменить эпигенетическое поведение, и вернуть эти защитные клетки к работе.

На недавней конференции американского института раковых исследований была рассмотрена связь между эпигенетикой и раком. К примеру, один из специалистов Родерик Дэшвуд (Roderick Dashwood) описывал исследование, которое показало, что с помощью определенных продуктов питания, таких как брокколи, удалось "выключить" работу особых белков, которые развиваются в организме человека вместе с раком и не позволяют клетками умереть естественным путем.

2. Дородовой уход необходим для того, чтобы следить за эпигенетическими изменениями

Что произойдет, если беременную крысу подвергать воздействию инсектицидов и фунгицидов? Повлияет ли это на ее потомство? Безусловно, да. В ходе исследования во время такого воздействия произошли эпигенетические изменения, которые привели к увеличению случаев мужского бесплодия или же способствовали очень слабому производству спермы. Более того, эти эпигенетические изменения сохранились на протяжении следующих четырех (!) поколений. Поэтому дородовой уход является ключом к здоровью наших потомков и будущих поколений.

Таким образом, если дородовой уход важен, есть ли определенный период беременности, во время которого нужен особый контроль? Похоже, что так. Проведенное колумбийским университетом исследование связывает недостаточное питание во время беременности с негативными последствиями для здоровья ребенка на протяжении всей его жизни. Однако, еще более интригующим оказался тот факт, что особенно опасно недоедание в первые 10 недель беременности.

1. Эпигенетика связана не только с экологией, но и социальными взаимодействиями

Когда дело доходит до эпигенетики, подсчет того, сколько раз в день вы обнимаете своего ребенка, обретает совершенно иной смысл. Похоже, что эпигенетические изменения также связаны с социальными и поведенческими взаимодействиями.

Одно из проведенных исследований показало, что от того, как крыса ухаживает за своими детенышами, зависит поведение малышей в будущем и их эпигенетические маркеры. Более того, команда исследователей показала, что они могут восполнить нехватку заботы при помощи специальных лекарственных препаратов, тем самым меняя эпигенетический фон.

Что касается людей, то когда в их жизни происходят стрессовые ситуации, они также накладывают свой отпечаток на то, как ведет себя наш геном. Кроме того, эпигенетические изменения сохраняются даже после того, как гормон стресса покидает наш организм.

Пожалуй, самое емкое и в то же время точное определение эпигенетики принадлежит выдающемуся английскому биологу, нобелевскому лауреату Питеру Медавару: «Генетика предполагает, а эпигенетика располагает».

Знаете ли вы, что наши клетки обладают памятью? Они помнят не только то, что вы обычно едите на завтрак, но и чем питались во время беременности ваша мама и бабушка. Ваши клетки хорошо помнят, занимаетесь ли вы спортом и как часто употребляете алкоголь. Память клеток хранит в себе ваши встречи с вирусами и то, насколько сильно вас любили в детстве. Клеточная память решает, будете ли вы склонны к ожирению и депрессиям. Во многом благодаря клеточной памяти мы не похожи на шимпанзе, хотя имеем с ним примерно одинаковый состав генома. И эту удивительную особенность наших клеток помогла понять наука эпигенетика.

Эпигенетика - довольно молодое направление современной науки, и пока она не так широко известна, как ее «родная сестра» генетика. В переводе с греческого предлог «эпи-» означает «над», «выше», «поверх». Если генетика изучает процессы, которые ведут к изменениям в наших генах, в ДНК, то эпигенетика исследует изменения активности генов, при которых структура ДНК остается прежней. Можно представить, будто некий «командир» в ответ на внешние стимулы, такие как питание, эмоциональные стрессы, физические нагрузки, отдает приказы нашим генам усилить или, наоборот, ослабить их активность.

Управление мутацией

Развитие эпигенетики как отдельного направления молекулярной биологии началось в 1940-х. Тогда английский генетик Конрад Уоддингтон сформулировал концепцию «эпигенетического ландшафта», объясняющую процесс формирования организма. Долгое время считалось, что эпигенетические превращения характерны лишь для начального этапа развития организма и не наблюдаются во взрослом возрасте. Однако в последние годы была получена целая серия экспериментальных доказательств, которые произвели в биологии и генетике эффект разорвавшейся бомбы.

Переворот в генетическом мировоззрении произошел в самом конце прошлого века. Сразу в нескольких лабораториях был получен ряд экспериментальных данных, заставивших генетиков сильно призадуматься. Так, в 1998 году швейцарские исследователи под руководством Ренато Паро из Университета Базеля проводили эксперименты с мухами дрозофилами, у которых вследствие мутаций был желтый цвет глаз. Обнаружилось, что под воздействием повышения температуры у мутантных дрозофил рождалось потомство не с желтыми, а с красными (как в норме) глазами. У них активировался один хромосомный элемент, который и менял цвет глаз.

К удивлению исследователей, красный цвет глаз сохранялся у потомков этих мух еще в течение четырех поколений, хотя они уже не подвергались тепловому воздействию. То есть произошло наследование приобретенных признаков. Ученые были вынуждены сделать сенсационный вывод: вызванные стрессом эпигенетические изменения, не затронувшие сам геном, могут закрепляться и передаваться следующим поколениям.

Но, может, такое бывает только у дрозофил? Не только. Позже выяснилось, что у людей влияние эпигенетических механизмов тоже играет очень большую роль. Например, была выявлена закономерность, что предрасположенность взрослых людей к диабету 2-го типа может во многом зависеть от месяца их рождения. И это при том, что между влиянием определенных факторов, связанных со временем года, и возникновением самого заболевания проходит 50−60 лет. Это наглядный пример так называемого эпигенетического программирования.

Что же может связывать предрасположенность к диабету и дату рождения? Новозеландским ученым Питеру Глюкману и Марку Хансону удалось сформулировать логическое объяснение этого парадокса. Они предложили «гипотезу несоответствия» (mismatch hypothesis), согласно которой в развивающемся организме может происходить «прогностическая» адаптация к условиям обитания, ожидающимся после рождения. Если прогноз подтверждается, это увеличивает шансы организма на выживание в мире, где ему предстоит жить. Если нет - адаптация становится дезадаптацией, то есть болезнью.

К примеру, если во время внутриутробного развития плод получает недостаточное количество пищи, в нем происходят метаболические перестройки, направленные на запасание пищевых ресурсов впрок, «на черный день». Если после рождения пищи действительно мало, это помогает организму выжить. Если же мир, в который попадает человек после рождения, оказывается более благополучным, чем прогнозировалось, такой «запасливый» характер метаболизма может привести к ожирению и диабету 2-го типа на поздних этапах жизни.

Опыты, проведенные в 2003 году американскими учеными из Дюкского университета Рэнди Джиртлом и Робертом Уотерлендом, уже стали хрестоматийными. Несколькими годами ранее Джиртлу удалось встроить искусственный ген обычным мышам, из-за чего те рождались желтыми, толстыми и болезненными. Создав таких мышей, Джиртл с коллегами решили проверить: нельзя ли, не удаляя дефектный ген, сделать их нормальными? Оказалось, что можно: они добавили в корм беременным мышам агути (так стали называть желтых мышиных «монстров») фолиевую кислоту, витамин В 12 , холин и метионин, и в результате этого появилось нормальное потомство. Пищевые факторы оказались способными нейтрализовать мутации в генах. Причем воздействие диеты сохранялось и в нескольких последующих поколениях: детеныши мышей агути, родившиеся нормальными благодаря пищевым добавкам, сами рождали нормальных мышей, хотя питание у них было уже обычное.

Можно уверенно сказать, что период беременности и первых месяцев жизни наиболее важен в жизни всех млекопитающих, в том числе и человека. Как метко выразился немецкий нейробиолог Петер Шпорк, «в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни».

Судьба по наследству

Наиболее изученный механизм эпигенетической регуляции активности генов - процесс метилирования, который заключается в добавлении метильной группы (одного атома углерода и трех атомов водорода) к цитозиновым основаниям ДНК. Метилирование может влиять на активность генов несколькими способами. В частности, метильные группы могут физически препятствовать контакту фактора транскрипции (белка, контролирующего процесс синтеза информационной РНК на матрице ДНК) со специфичными участками ДНК. С другой стороны, они работают в связке с метилцитозин-связывающими белками, участвуя в процессе ремоделирования хроматина - вещества, из которого состоят хромосомы, хранилища наследственной информации.

Метилирование ДНК
Метильные группы присоединяются к цитозиновым основаниям, не разрушая и не изменяя ДНК, но влияя на активность соответствующих генов. Существует и обратный процесс - деметилирование, при котором метильные группы удаляются и первоначальная активность генов восстанавливается" border="0">

Метилирование участвует во многих процессах, связанных с развитием и формированием всех органов и систем у человека. Один из них - инактивация X-хромосом у эмбриона. Как известно, самки млекопитающих обладают двумя копиями половых хромосом, обозначаемых как X-хромосома, а самцы довольствуются одной X и одной Y-хромосомой, которая значительно меньше по размеру и по количеству генетической информации. Чтобы уравнять самцов и самок в количестве генных производимых продуктов (РНК и белков), большинство генов на одной из X-хромосом у самок выключается.

Кульминация этого процесса происходит на стадии бластоцисты, когда зародыш состоит из 50−100 клеток. В каждой клетке хромосома для инактивации (отцовская или материнская) выбирается случайным образом и остается неактивной во всех последующих генерациях этой клетки. С этим процессом «перемешивания» отцовских и материнских хромосом связан тот факт, что женщины намного реже страдают заболеваниями, связанными с X-хромосомой.

Метилирование играет важную роль в клеточной дифференцировке - процессе, благодаря которому «универсальные» эмбриональные клетки развиваются в специализированные клетки тканей и органов. Мышечные волокна, костная ткань, нервные клетки - все они появляются благодаря активности строго определенной части генома. Также известно, что метилирование играет ведущую роль в подавлении большинства разновидностей онкогенов, а также некоторых вирусов.

Метилирование ДНК имеет наибольшее прикладное значение из всех эпигенетических механизмов, так как оно напрямую связано с пищевым рационом, эмоциональным статусом, мозговой деятельностью и другими внешними факторами.

Данные, хорошо подтверждающие этот вывод, были получены в начале этого века американскими и европейскими исследователями. Ученые обследовали пожилых голландцев, родившихся сразу после войны. Период беременности их матерей совпал с очень тяжелым временем, когда в Голландии зимой 1944−1945 годов был настоящий голод. Ученым удалось установить: сильный эмоциональный стресс и полуголодный рацион матерей самым негативным образом повлиял на здоровье будущих детей. Родившись с малым весом, они во взрослой жизни в несколько раз чаще были подвержены болезням сердца, ожирению и диабету, чем их соотечественники, родившиеся на год или два позднее (или ранее).

Анализ их генома показал отсутствие метилирования ДНК именно в тех участках, где оно обеспечивает сохранность хорошего здоровья. Так, у пожилых голландцев, чьи матери пережили голод, было заметно понижено метилирование гена инсулиноподобного фактора роста (ИФР), из-за чего количество ИФР в крови повышалось. А этот фактор, как хорошо известно ученым, имеет обратную связь с продолжительностью жизни: чем выше в организме уровень ИФР, тем жизнь короче.

Позднее американский ученый Ламбер Люмэ обнаружил, что и в следующем поколении дети, родившиеся в семьях этих голландцев, также появлялись на свет с ненормально малым весом и чаще других болели всеми возрастными болезнями, хотя их родители жили вполне благополучно и хорошо питались. Гены запомнили информацию о голодном периоде беременности бабушек и передали ее даже через поколение, внукам.

Многоликая эпигенетика

Эпигенетические процессы реализуются на нескольких уровнях. Метилирование действует на уровне отдельных нуклеотидов. Следующий уровень - это модификация гистонов, белков, участвующих в упаковке нитей ДНК. От этой упаковки также зависят процессы транскрипции и репликации ДНК. Отдельная научная ветвь - РНК-эпигенетика - изучает эпигенетические процессы, связанные с РНК, в том числе метилирование информационной РНК.

Гены не приговор

Наряду со стрессом и недоеданием на здоровье плода могут влиять многочисленные вещества, искажающие нормальные процессы гормональной регуляции. Они получили название «эндокринные дизрапторы» (разрушители). Эти вещества, как правило, имеют искусственную природу: человечество получает их промышленным способом для своих нужд.

Самый яркий и негативный пример - это, пожалуй, бисфенол-А, уже много лет применяющийся в качестве отвердителя при изготовлении изделий из пластмасс. Он содержится в некоторых видах пластиковой тары - бутылок для воды и напитков, пищевых контейнеров.

Отрицательное воздействие бисфенола-А на организм заключается в способности «уничтожать» свободные метильные группы, необходимые для метилирования, и подавлять ферменты, прикрепляющие эти группы к ДНК. Биологи из Гарвардской медицинской школы обнаружили способность бисфенола-А тормозить созревание яйцеклетки и тем самым приводить к бесплодию. Их коллеги из Колумбийского университета обнаружили способность бисфенола-А стирать различия между полами и стимулировать рождение потомства с гомосексуальными наклонностями. Под воздействием бисфенола нарушалось нормальное метилирование генов, кодирующих рецепторы к эстрогенам, женским половым гормонам. Из-за этого мыши-самцы рождались с «женским» характером, покладистыми и спокойными.

К счастью, существуют продукты, оказывающие положительное влияние на эпигеном. Например, регулярное употребление зеленого чая может снижать риск онкозаболеваний, поскольку в нем содержится определенное вещество (эпигаллокатехин-3-галлат), которое может активизировать гены-супрессоры (подавители) опухолевого роста, деметилируя их ДНК. В последние годы популярен модулятор эпигенетических процессов генистеин, содержащийся в продуктах из сои. Многие исследователи связывают содержание сои в рационе жителей азиатских стран с их меньшей подверженностью некоторым возрастным болезням.

Изучение эпигенетических механизмов помогло понять важную истину: очень многое в жизни зависит от нас самих. В отличие от относительно стабильной генетической информации, эпигенетические «метки» при определенных условиях могут быть обратимыми. Этот факт позволяет рассчитывать на принципиально новые методы борьбы с распространенными болезнями, основанные на устранении тех эпигенетических модификаций, которые возникли у человека под воздействием неблагоприятных факторов. Применение подходов, направленных на корректировку эпигенома, открывает перед нами большие перспективы.