Главная · Дисбактериоз · Чем отличаются особенности всасывания продуктов переваривания жиров. Особенности переваривания и всасывании жиров у детей. Полный ферментативный гидролиз триацилглицерола

Чем отличаются особенности всасывания продуктов переваривания жиров. Особенности переваривания и всасывании жиров у детей. Полный ферментативный гидролиз триацилглицерола

Переваривание жиров - ферментативный гидролиз, который происходит вдвенадцатиперстной кишке и тонком кишечнике под влиянием ферментов, содержащихся в соке поджелудочной железы и соке кишечных желез. Желчь необходима для переваривания жиров, так как она содержит детергенты (желчные кислоты), которые эмульгируют жиры, облегчая доступ к ним ферментов. Продукты пищеварительного гидролиза - глицерин и жирные кислоты (в комплексе с желчными кислотами), из полости кишечника поступают в клетки его слизистой. В клетках слизистой кишечника из продуктов гидролиза вновь ресинтезируется жир и образуются особые частицы - хиломикроны, которые поступают в лимфу. Откуда они, пройдя сквозь лимфатические сосуды, через грудной лимфатический проток попадают в кровь. Только небольшая часть образовавшихся при гидролизе жирных кислот с относительно короткой углеродной цепочкой (в основном, это продукты гидролиза жиров молока) могут всасываться и поступать в кровь воротной вены, а оттуда - в печень.
Роль печени в обмене жиров

Печень играет очень важную роль в прессах мобилизации, переработке и биосинтеза жиров. Из пищеварительного тракта только жирные кислоты с короткой цепью (в комплексе с желчными кислотами) поступают в печень с кровью по воротной вене. Эти жирные кислоты окисляются при участии ферментных систем печени и не участвуют в процессах биосинтеза жиров. У взрослых людей они, по-видимому, не играют особой роли в обмене веществ. Исключение составляют дети, в пищевом рационе которых преобладают жиры молока. Остальные липиды поступают в печень с кровью, притекающей по печеночной артерии в составе комплексов - хиломикронов или липопротеидов. В печени, как и в других тканях, идут процессы окисления жирных кислот. Несмотря на свои важные функции, жиры - это заменяемые вещества, так как в организме жирные кислоты, кроме нескольких незаменимых ненасыщенных, синтезируются заново. Суммарный процесс синтеза жирных кислот называется липогенез, и печень занимает одно из первых мест среди других органов по интенсивности этого процесса.

В печени происходят ферментативные процессы превращения холестерина и фосфолипидов. Биосинтез фосфолипидов в печени обеспечивает обновление структурных компонентов ее клеточных мембран. Другие фосфолипиды, синтезированные в печени, поступают в кровь и становятся достоянием тканей.

в тканях:

В тканях жиры расщепляются под действием различных липаз, а образовавшиеся жирные кислоты входят в состав других соединений (фосфопипиды, эфиры холестерина и т. д.) или окисляются до конечных продуктов. Окисление жирных кислот совершается несколькими путями. Часть жирных кислот при окислении в печени дает ацетон. При тяжелом сахарном диабете, литюидном нефрозе и других заболеваниях количество ацетоновых тел в крови резко увеличивается.


Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Ресинтез липидов внутри эпителиальных клеток кишечника. Из моно- ацилглицеролов и жирных кислот в эпителиальных клетках вновь синтезиру­ются триацилглицеролы. Наиболее простой путь синтеза липидов, так назы­ваемый p-моноглицеридный путь, включает две последовательные реакции

этерификации Р(2)-моноацилглицерола активированными жирными кислота* ми в форме ацил-КоА по схеме:

Эти реакции катализируются специфическими ферментами ацилтранф* разами: моноглицеридацилтрансферазой и диглщкридацилтрансферазой соот­ветственно.

Другой путь синтеза липидов - а-глицерофосфатный, аналогичен про­цессу синтеза триацилглицеролов в других тканях. Он будет рассмотрен в раз­деле, посвященном внутриклеточному метаболизму липидов

В суточном рационе обычно содержится 80- 100 г жиров.

Расщепление жиров в желудочно-кишечном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений, поскольку содержащаяся в небольшом количестве в желудочном соке взрослого человека и млекопитающих липаза малоактивна. Величина pH желудочного сока около 1,5, а оптимальное значение pH для желудочной липазы находится в пределах 5,5-7,5. Кроме того, липаза может активно гидролизовать только предварительно эмульгированные жиры, в желудке же отсутствуют условия для эмульгирования жиров.

Переваривание жиров в полости желудка играет важную роль в процессе пищеварения у детей, особенно грудного возраста. Известно, что pH желудочного сока у детей грудного возраста около 5,0, что способствует перевариванию эмульгированного жира молока желудочной липазой. К тому же есть основания полагать, что при длительном употреблении молока в качестве основного продукта питания у детей грудного возраста наблюдается адаптивное усиление синтеза желудочной липазы.

Хотя в желудке взрослого человека не происходит заметного переваривания жиров пищи, все же в желудке отмечается частичное разрушение липопротеидных комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, незначительное расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, поступая в кишечник, способствуют эмульгированию там жиров.

После того как химус (жидкое или полужидкое содержимое желудка или кишечника, состоящее из частично переваренной пищи, желудочного и кишечного соков, секретов желёз, жёлчи, слущённых эпителиальных клеток и микроорганизмов) попадает в двенадцатиперстную кишку, здесь прежде всего происходит нейтрализация соляной кислоты желудочного сока, попавшей в кишечник с пищей, бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы – липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Наиболее мощное эмульгирующее действие на жиры, несомненно, оказывают соли желчных кислот , попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей, большая часть которых конъюгирована с глицином или таурином. Желчные кислоты представляют собой основной конечный продукт обмена холестерина. Во всех реакциях образования из холестерина желчных кислот принимает участие большое количество ферментов и коферментов печени.

Считается, что только комбинация: соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид способна дать необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

Желчные кислоты выполняют также важную роль в качестве своеобразного активатора панкреатической липазы, под влиянием которой происходит расщепление жира в кишечнике. Вырабатываемая в поджелудочной железе липаза расщепляет триглицериды, находящиеся в эмульгированном состоянии. Считают, что активирующее влияние желчных кислот на липазу выражается в смещении оптимума действия данного фермента с pH 8,0 до 6,0, т. е. до той величины pH, которая более постоянно поддерживается в двенадцатиперстной кишке в ходе переваривания жирной пищи.

Необходимо отметить, что в расщеплении жиров участвует также кишечная липаза, однако активность ее невысока. К тому, же эта липаза катализирует гидролитическое расщепление моноглицеридов и не действует на ди- и триглицериды. Таким образом, практически основными продуктами, образующимися в кишечнике при расщеплении пищевых жиров, являются жирные кислоты, моноглицериды и глицерин.

Продукты расщепления жира всасываются слизистой тонкого кишечника.

Всасывание жиров в кишечнике . Всасывание происходит в проксимальной части тонкого кишечника. Тонко эмульгированные жиры (величина жировых капелек эмульсии не должна превышать 0,5 мкм) частично могут всасываться через стенку кишечника без предварительного гидролиза. Однако основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин.

1) Жирные кислоты с короткой углеродной цепью (менее 10 С-атомов) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда - в печень, минуя какие-либо превращения в кишечной стенке.

2) Сложнее дело обстоит с жирными кислотами с длинной углеродной цепью и моноглицеридами. Всасывание этих соединений происходит при участии желчи и главным образом желчных кислот, входящих в ее состав. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы (мицеллярный раствор). Структура этих мицелл такова, что их гидрофобное ядро (жирные кислоты, глицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся с места гидролиза жиров к всасывающей поверхности кишечного эпителия. Происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (энтерогепатической) циркуляции .

Установлено, что у человека общий пул желчных кислот - примерно 2,8-3,5 г; при этом они совершают 5-6 оборотов в сутки.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтез жиров в стенке кишечника . В стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своей природе от пищевого жира. В известной мере это обеспечивается тем, что в синтезе триглицеридов (а также фосфолипидов) в кишечной стенке принимают участие наряду с экзогенными и эндогенные жирные кислоты. Однако способность к осуществлению в стенке кишечника синтеза жира, специфичного для данного вида животного, все же ограничена. А. Н. Лебедевым показано, что при скармливании животному, особенно предварительно голодавшему, больших количеств чужеродного жира (например, льняного масла или верблюжьего жира) часть его обнаруживается в жировых тканях животного в неизмененном виде. Жировые депо скорее всего являются единственной тканью, где могут откладываться чужеродные жиры. Липиды, входящие в состав протоплазмы клеток других органов и тканей, отличаются высокой специфичностью, их состав и свойства мало зависят от пищевых жиров.

Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах сводится к следующему: первоначально из жирных кислот образуется их активная форма - ацил-КоА (группа ферментов из класса оксидоредуктаз, которые катализируют реакции переноса протона (дегидрогенизация) от субстрата - ацил-КоА жирной кислоты на электрон-переносящий флавопротеин (FAD), участвуют в процессе β-окисления), после чего происходит ацилирование моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:

Таким образом, в клетках кишечного эпителия высших животных моноглицериды, образующиеся в кишечнике при переваривании пищи, могут ацилироваться непосредственно, без промежуточных стадий.

Однако в эпителиальных клетках тонкого кишечника содержатся ферменты - моноглицеридлипаза, расщепляющая моноглицерид на глицерин и жирную кислоту, и глицеролкиназа, способная превращать глицерин (образовавшийся из моноглицерида или всосавшийся из кишечника) в глицерол-3-фосфат. Последний, взаимодействуя с активной формой жирной кислоты - ацил-КоА, дает фосфатидную кислоту, которая затем используется для ресинтеза триглицеридов и особенно глицерофосфолипидов.

В суточном рационе обычно содержится 80- 100 г жиров. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений. В желудочном соке содержится липаза, получившая название желудочной, однако роль ее в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5–7,5). Напомним, что значение рН желудочного сока около 1,5. В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии.

Переваривание жира в организме человека происходит в тонком кишечнике. Жиры предварительно с помощью желчных кислот превращается в эмульсию. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы – липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Под действием липазы жир путем гидролиза расщепляется до глицерина и жирных кислот .

СН -~ ОН + R 2 - СООН I
СН -~ ОН + R 2 - СООН I

CH 2 - O - C - R 1 CH 2 OH R 1 - COOH

CH - O - C - R 2 CH - OH + R 2 - COOH

CH 2 - O - C - R 3 CH 2 OH R 3 - COOH

Жир Глицерин

Поскольку в пище присутствуют разнообразные жиры, то в результате их переваривания образуется большое количество разновидностей жирных кислот.

Продукты расщепления жира всасываются слизистой тонкого кишечника. Глицерин растворим в воде, поэтому его всасывание происходит легко. Жирные кислоты, нерастворимые в воде, всасываются в виде комплексов с желчными кислотами (комплексы, состоящие из жирных и желчных кислот, называются холеиновыми кислотами) В клетках тонкой кишки холеиновые кислоты распадаются на жирные и желчные кислоты. Желчные кислоты из стенки тонкого кишечника поступают в печень и затем снова выделяются в полость тонкого кишечника.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтезированные жиры по лимфатическим сосудам минуя печень поступают в большой круг кровообращения и откладываются в запас в жировых депо. Главные жировые депо организма располагаются в подкожной жировой клетчатке, большом и малом сальниках, околопочечной капсуле.

Изменения жиров при хранении. Характер и степень изменения жиров при хранении зависят от воздействия на них воздуха и воды, температуры и продолжительности хранения, а также от наличия веществ, способных вступать в химическое взаимодействие с жирами. Жиры могут претерпевать различные изменения – от инактивации содержащихся в них биологически активных веществ до образования токсичных соединений.

При хранении различают гидролитическую и окислительную порчу жиров, нередко оба вида порчи протекают одновременно.

Гидролитическое расщепление жиров протекает в процессе изготовления и хранения жиров и жиросодержащих продуктов. Жиры при определенных условиях реагируют с. водой, образуя глицерин и жирные кислоты.

Степень гидролиза жиров характеризуется содержанием свободных жирных кислот, ухудшающих вкус и запах продукта. Реакция гидролиза может быть обратимой и зависит от содержания в реакционной среде воды. Гидролиз протекает ступенчато в 3 стадии. На первой стадии от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида. Затем на второй стадии от диглицерида отщепляется вторая молекула жирной кислоты с образованием моноглицерида. И наконец, на третьей стадии в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Ди- и моноглицериды, образующиеся на промежуточных стадиях, способствуют ускорению гидролиза. При полном гидролитическом расщеплении молекулы триглицерида образуется одна молекула глицерина и три молекулы свободных жирных кислот.

3. Катаболизм жиров.

Использование жира в качестве источника энергии начинается с его выхода из жировых депо в кровяное русло. Этот процесс называется мобилизация жира . Мобилизация жира ускоряется под действием симпатической нервной системы и гормона адреналина.

Главная особенность переваривания жиров в раннем детском возрасте заключается в том, что примерно половина жиров расщепляется в желудке. Данная особенность обусловлена следующими обстоятельствами:

  • 1. жиры молока находится в эмульгированном состоянии
  • 2. при грудном вскармливании в переваривании жиров участвует липаза грудного молока
  • 3. в процессе сосания у грудного ребёнка вырабатывается лингвальная липаза, которая оказывает эффект в желудке
  • 4. активно вырабатывается желудочная липаза с оптимумом рН около 5,0
  • 5. у детей в желудке менее кислая среда, приближенная к оптимуму рН для липаз
  • 6. активность панкреатической липазы у детей снижена
  • 7. в детском возрасте менее активен синтез жёлчных кислот, повышена их потеря через кишечник и замедлена циркуляция.

Всасывание жиров у детей происходит с большей скоростью, чем у взрослых в связи с высокой проницаемостью слизистой кишечника.

Транспорт жиров кровью

Гидрофобные жиры не могут транспортироваться кровью самостоятельно. Они переносятся в следующих формах:

  • 1. липопротеиды (липопротеины) - белково-липидные комплексы
  • 2. хиломикроны - жировые капли, образующиеся в млечном соке
  • 3. свободные жирные кислоты транспортируются в комплекте с альбуминами

Хиломикроны - это мельчайшие капельки жира с размерами около 500 нм, плотностью 0,95 г/см 3 , состоящие из 2% белка и 90% ТАГ. Хиломикроны синтезируется в слизистой кишечника, считаются транспортной формой пищевых (экзогенных) жиров организме. Хиломикроны попадают сначала в лимфу, а затем разносятся кровью в основном в жировые депо (>50%), а также к печени, лёгким, мышечной ткани.

Липопротеиды (ЛП) являются основной транспортной формой жиров.

По электрофоретической подвижности различают: пре в - ЛП, в - ЛП, б - ЛП

По плотности выделяют:

  • - ЛП очень низкой плотности (ЛПОНП)
  • - ЛП низкой плотности (ЛПНП)
  • - ЛП высокой плотности (ЛПВП)
  • - ЛП промежуточной плотности
  • - ЛП очень высокой плотности

Все ЛП построены по общему принципу. В центре частицы находится гидрофобное ядро, в которое входят ТАГ и эфиры холестерина, вокруг него формируется гидрофильная оболочка, в которую входят ФЛ, холестерин. На поверхности располагаются белки - апопопротеины (АроPt).

Различают несколько видов АроPt: A, B, C, E. Они формируют структуру липопротеидных частиц, взаимодействуют с тканевыми рецепторами к ЛП, являются активаторами ферментов обмена ЛП

ЛП осуществляют транспорт липидов, жирорастворимых витаминов и гидрофобных гормонов.

Закономерности строения липопротеидов в ряду: ЛПОНП >ЛПНП>ЛПВП представлены в таблице.

Таблица 1

ЛПОНП - синтезируется в печени, считаются основной транспортной формой эндогенных жиров. В эндотелии сосудов ЛПОНП и хиломикроны подвергаются действию фермента липопротеидной липазы, которая расщепляет в их составе ТАГ. В результате в составе ЛП повышается доля холестерина, и ЛПОНП превращаются в ЛПНП.

ЛПНП считаются транспортной формой холестерина от печени к органам и тканям. В тканях имеются рецепторы и ЛПНП, при участии которых происходит поглощение холестерина с последующим использованием его на построение мембран, синтез стероидов, депонированием в виде эфиров.

ЛПВП синтезируется в печени в виде дисковидных структур. Они считается транспортной формой холестерина из тканей к печени. В кровотоке при контакте с эндотелием происходит поглощение холестерина ЛПВП. Они постепенно превращаются в сферические структуры и переносят холестерин в печень. В поглощении холестерина частицами ЛПВП участвует фермент ЛХАТ (лицитинхолестеролацилтрансфераза), который в составе ЛПВП переносит остатки жирных кислот с фосфолипидов на холестерин с образованием эфиров холестерина. Эфиры холестерина более гидрофобны по сравнению со свободным холестерином и, в силу этого, погружаются внутрь ЛП частицы.

У детей общее содержание ЛП ниже, чем у взрослых. В детском возрасте снижена концентрация хиломикронов и ЛПОНП, повышено содержание ЛПВП, в которых повышено содержание гидрофильных компонентов.

Таблица 2

Большая часть переносимых кровью липидов откладывается в жировых депо, к которым относятся подкожно-жировая клетчатка, большой и малый сальники. У детей наиболее активно депонирование жиров происходит в возрасте 1 года, 7 лет и в пубертатном периоде. В раннем детском возрасте у детей важным видом жировой ткани является бурая жировая ткань. Она локализована в основном на спине, на груди, имеет бурый оттенок, который обусловлен большим содержанием митохондрий и Fе - содержащих цитохромов. В бурой жировой ткани происходит нефосфолирирующее окисление жиров, которое сопровождается выделением тепловой энергии (она является органом термогенеза). Жировое депо у детей легко истощается при нарушении питания, болезнях, стрессе. Липиды в жировых депо постоянно обновляются.

Обмен триацилглицеринов

Распад триацилглицеринов в тканях (липолиз)

Триацилглицерины поэтапно расщепляется тканевыми липазами.

Ключевым ферментом липолиза является гормональнозависимая ТАГ-липаза. Образующиеся на этом этапе распада жиров глицерин и жирные кислоты окисляются в тканях с образованием энергии.

Окисление жирных кислот.

Различают несколько вариантов окисления жирных кислот: б - окисление, в - окисление, щ - окисление. Основным вариантом окисления жирных кислот является в - окисление. Оно наиболее активно протекает в жировой ткани, печени, почках и сердечной мышце.

В - окисление заключается в постепенном отщеплении от жирной кислоты двух углеродных атомов в виде ацетил - КоА с освобождением энергии. Запас жирных кислот сосредоточен в цитозоле, где протекает активация жирных кислот с образованием ацил - КоА


Последующее в-окисление ацил-КоА происходит в митохондриях. Митохондриальная мембрана непроницаема для длинноцепочечных ацил - КоА. В переносе их внутрь митохондрий участвует специальный переносчик карнитин (метил, гидропроизводное аминомасляной кислоты). Ацил - КоА образует с карнитином комплекс, который после переноса жирной кислоты внутрь митохондрий распадается.

Химизм в - окисления насыщенных жирных кислот

Энергетическая эффективность бета - окисления жирных кислот складывается из энергии окисления ацетил - КоА в цикле Кребса и энергии, освобождающейся в самом бета - цикле. Энергия окисления жирной кислоты тем выше, чем длиннее её углеродная цепь. Количество молекул ацетил - КоА из данной жирной кислоты и количество образующихся из них молекул АТФ определяется по формулам:

где n - количество молекул ацетил - КоА,

N - число атомов углерода в жирной кислоте.

Количество молекул АТФ за счёт окисления молекул ацетил-КоА = (N/2)*12

Число в - циклов окисления на один меньше, чем количество образующихся молекул ацетил-КоА, поскольку в последнем цикле масляная кислота за один цикл переходит в две молекулы ацетил-КоА, и рассчитывается по формуле

Количество в - циклов = (N/2)-1

Количество молекул АТФ в в - цикле рассчитывается, исходя из последующего окисления образовавшихся в нём НАДН 2 (3 АТФ) и ФАДН 2 (2 АТФ) по формуле

Количество молекул АТФ, образующихся в бета-циклах = ((N/2)-1)*5

2 макроэргические связи АТФ расходуются на активацию жирной кислоты

Суммарная формула для подсчёта выхода АТФ при окислении насыщенной жирной кислоты имеет вид: 17(N/2)-7.

При окислении жирных кислот с нечётным числом углеродных атомов образуется сукцинил - КоА, который вступает в цикл Кребса.

Окисление ненасыщенных жирных кислот на начальных стадиях представляет обычное бета - окисление до места двойной связи. Если эта двойная связь находится в бета - положении, то продолжается окисление жирной кислоты со второго этапа (минуя стадию восстановления ФАД> ФАДН 2). Если двойная связь находится не бета - положении, то ферментами еноилтрансферазами связь перемещается в бета - положение. Таким образом, при окислении ненасыщенных жирных кислот образуется меньше энергии по формуле (теряется образование ФАДН2):

где m-число двойных связей.

Всасывание жиров

Переваривание жиров в желудочно-кишечном тракте (ЖКТ) отличается от переваривания белков и углеводов. Жиры не растворимы в жидкой среде кишечника, и поэтому для того, чтобы они гидролизовались и всасывались, необходимо их эмульгирование - разбивка на мельчайшие капельки. В результате получается эмульсия - дисперсия микроскопических частиц одной жидкости в другой. Эмульсии могут быть образованы двумя любыми не смешивающимися жидкостями. В большинстве случаев одной из фаз эмульсий является вода. Эмульгирование жиров идёт с помощью желчных кислот, которые синтезируются из холестерина в печени. Так что холестерин важен для усвоения жиров.

Как только произошло эмульгирование, жиры (липиды) становятся доступными для панкреатических липаз, которые секретирует поджелудочная железа, особенно для липазы и фосфолипазы А2.

Продукты расщепления жиров панкреатическими липазами - это глицерин и жирные кислоты.

В результате расщепления молекул липидов (жиров) получаются глицерин и жирные кислоты. Они, а также мельчайши капли нерасщеплённого эмульгированного жира, всасываются в верхнем отделе тонкого кишечника в начальных 100 см. В норме всасывается 98% пищевых липидов.

1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

2. Другие продукты переваривания (жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты проникают внутрь клетки, после чего транспортируются в эндоплазматический ретикулум.

Желчные кислоты частично также могут попадать в клетки и далее в кровь воротной вены, однако большая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

Этапы переваривания жиров

Потребность в липидах взрослого организма составляет 80-100 г в сутки, из них растительных (жидких) жиров должно быть не менее 30%. С пищей в основном поступают триацилглицеролы, фосфолипиды и эфиры ХС.

Переваривание липидов осложняется тем, что их молекулы полностью или частично гидрофобны. Для преодоления этой помехи используется процесс эмульгирования, когда гидрофобные молекулы (ТАГ, эфиры ХС) или гидрофобные части молекул (ФЛ, ХС) погружаются внутрь мицеллы, а гидрофильные остаются на поверхности, обращенной к водной фазе. Условно внешний обмен липидов можно подразделить на следующие этапы:

1. Эмульгирование жиров пищи - необходимо для того, чтобы ферменты ЖКТ смогли начать работу.

2. Гидролиз триацилглицеролов, фосфолипидов и эфиров ХС под влиянием ферментов ЖКТ.

3. Образование мицелл из продуктов переваривания (жирных кислот, МАГ, холестерола).

4. Всасывание образованных мицелл в эпителий кишечника.

5. Ресинтез триацилглицеролов, фосфолипидов и эфиров ХС в энтероцитах.

После ресинтеза липидов в кишечнике они собираются в транспортные формы - хиломикроны (основные) и липопротеины высокой плотности (ЛПВП) (малое количество) - и разносятся по организму.

Эмульгирование и гидролиз липидов

Первые два этапа переваривания липидов, эмульгирование и гидролиз, происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.

Переваривание в ротовой полости

У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.

Переваривание в желудке

Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока).

Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.

Переваривание в кишечнике

Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся лизофосфолипиды также являются хорошим поверхностно-активным веществом, поэтому они способствуют эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм.Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока.Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы, активируемой при участии колипазы. Колипаза, в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С1 и С3 атомами углерода глицерола. В результате ее работы остается 2-моноацилглицерол (2-МАГ). 2-МАГ всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью.

В панкреатическом соке также имеется активируемая трипсином фосфолипаза А2, отщепляющая жирную кислоту от С2. Обнаружена активность фосфолипазы С и лизофосфолипазы.

Рис. 4

В кишечном соке имеется активность фосфолипазы А2 и С. Имеются также данные о наличии в других клетках организма фосфолипаз А1 и D.

Образование мицелл

В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицеролы, жирные кислоты и свободный холестерол, формирующие структуры мицеллярного типа (размер около 5 нм). Свободный глицерол всасывается прямо в кровь.


Рис. 6

Рис. 7

Желчь представляет собой сложную жидкость со щелочной реакцией. В ней выделяют сухой остаток - около 3% и воду - 97%. В сухом остатке обнаруживается две группы веществ:

попавшие сюда путем фильтрации из крови натрий, калий, бикарбонат-ионы, креатинин, холестерол (ХС), фосфатидилхолин (ФХ),

активно секретируемые гепатоцитами билирубин и желчные кислоты.

В норме между основными компонентами желчи выдерживается соотношение Желчные кислоты: ФХ: ХС равное 65:12:5. Без желчи липиды не перевариваются.

В сутки образуется около 10 мл желчи на кг массы тела, таким образом, у взрослого человека это составляет 500-700 мл. Желчеобразование идет непрерывно, хотя интенсивность на протяжении суток резко колеблется.

Роль желчи

Наряду с панкреатическим соком нейтрализация кислого химуса, поступающего из желудка. При этом карбонаты взаимодействуют с НСl, выделяется углекислый газ и происходит разрыхление химуса, что облегчает переваривание.

Усиливает перистальтику кишечника.

Обеспечивает переваривание жиров:

эмульгирование для последующего воздействия липазой, необходима комбинация [желчные кислоты+жирные кислоты+моноацилглицеролы],

уменьшает поверхностное натяжение, что препятствует сливанию капель жира,

образование мицелл, способных всасываться.

Экскреция избытка ХС, желчных пигментов, креатинина, металлов Zn, Cu, Hg, лекарств. Для холестерина желчь - единственный путь выведения, с ней может выводиться 1-2 г/сут.