Главная · Болезни желудка · Стартовый уровень peep. Маневр рекрутмента в педиатрической практике. Кт легких, полученные при трассировке кривой в статических условиях

Стартовый уровень peep. Маневр рекрутмента в педиатрической практике. Кт легких, полученные при трассировке кривой в статических условиях

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ
ПЕДИАТРИЧЕСКИЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
МАНЕВР РЕКРУТМЕНТА В
ПЕДИАТРИЧЕСКОЙ ПРАКТИКЕ.
КОГДА И КАК?
Александрович Ю.С.
Заведующий кафедрой анестезиологии, реаниматологии и
неотложной педиатрии ФП и ДПО

КОНЦЕПЦИЯ «ОТКРЫТЫХ ЛЕГКИХ» (ОЛ).
Состоит в раскрытии (PIP) спавшихся пораженных зон
легких (альвеол), и поддержании (PEEP) их в раскрытом
состоянии в течение всех фаз дыхания (вдоха и
выдоха).
Важно при этом предотвратить коллабирование
легких (PEEP).
ПРЕИМУЩЕСТВА: улучшение оксигенации артериальной
крови, которая была вызвана нарастанием фракции
внутрилегочного шунта и уменьшение легочной растяжимости
путем смещения наклона кривой P/V к более высокой точке
эффективности и предотвращение циклического
открытия/коллапса альвеол при каждом дыхательном цикле.
Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18:319– 3 2 1

КОНЦЕПЦИЯ «ОТКРЫТЫХ» ЛЕГКИХ (OPEN LUNG STRATEGY)

Маневр рекруитмента – метод респираторной терапии,
направленный на увеличение числа альвеол,
участвующих в вентиляции (F.J.J. Halbertsma et al.,
2007)
Маневр мобилизации альвеол – стратегия респираторной
поддержки,
заключающаяся
в
кратковременном
пошаговом увеличения среднего давления в дыхательных
путях
3

МАНЕВР РЕКРУТМЕНТА

Это преднамеренный динамический процесс
временного повышения транспульмонального
давления, целью которого является открытие
нестабильных безвоздушных
(коллабированных) альвеол.
(Ppl): Pl = Palv - Ppl.
Ю. В. Марченков, В. В. Мороз, В. В. Измайлов Патофизиология рекрутирующей вентиляции и ее
влияние на биомеханику дыхания (обзор литературы). Анестезиология и реаниматология № 3, 2012
с.34-41.

Нижние участки легких плохо
вентилируются в конце выдоха
из-за сдавливающего
гидростатического давления. В
конце вдоха открытые альвеолы
могут перерастягиваться (А),
избыточное напряжение может
быть генерировано на границе
между вентилируемыми и
невентилируемыми участками
легких (В), а нижние альвеолы
могут повторно открываться и
закрываться, что приводит к
повреждению тканей (С).

Три механизма вентилятор
индуцированного повреждения легких
(VILI):
а) чрезмерное растяжение ткани,
вызванное чрезмерным объемом и
давлением,
b) альвеолярный коллапс и
повторное открывание при каждом
вдохе, вторичным по отношению к
дезактивации поверхностно-активных
веществ, что вызывает динамическую
травму ткани, вызванную
деформацией
c) Гетерогенная вентиляция, при
которой возникают изолированные
участки альвеолярного коллапса
(синие стрелки), нарушает
стабильность альвеолярной
взаимозависимости.

РЕКРУТАБЕЛЬНОСТЬ

Идеальная модель, отражающая последствия повышенной проницаемости в условиях
увеличения давления, при сосуществовании неоднородных ОБЛАСТЕЙ
ГИПЕРИНФЛЯЦИИ, НОРМАЛЬНОЙ ИНФЛЯЦИИ, КОЛЛАПСА И ОБЛАСТЕЙ
КОНСОЛИДАЦИИ. Стрелками указано давление, необходимое для открытия этих зон.
∞ представляет собой бесконечное давление, т. е. эта область никогда не может быть
открыта несмотря на увеличение положительного давления в ДП.
Umbrello M, Formenti P, Bolgiaghi L, Chiumello D.Current Concepts of ARDS: A Narrative Review. Int J Mol Sci. 2016 Dec
29;18(1).

РЕКРУТАБЕЛЬНОСТЬ

Пример КТ легких у больных с высоким (верхняя панель) или низким (нижняя панель)
потенциалом рекрутирования. Стрелки указывают изменение морфологического
состояния при низком давлении в ДП (5 см Н2О), и высоком давлении в ДП (45 см Н2О)
Umbrello M, Formenti P, Bolgiaghi L, Chiumello D.Current Concepts of ARDS: A Narrative Review. Int
J Mol Sci. 2016 Dec 29;18(1).

РАЗВИТИЕ АТЕЛЕКТАЗА СРАЗУ ПОСЛЕ ИНДУКЦИИ АНЕСТЕЗИИ

КТ грудной клетки показаны легкие пациента до (слева) и после (справа) индукции
анестезии. Слева, ясно видны легочные поля в заднем отделе. Справа видно наличие
ателектаза в задней части легких (окружено красным овалом).
Hedenstierna G. Effects of anaesthesia on respiratory function. Baillière’s
Clin Anaesthesiol. 1996;10(1):1-16.

НЕГАТИВНЫЕ ЭФФЕКТЫ ОБЩЕЙ АНЕСТЕЗИИ НА ФУНКЦИЮ ДЫХАНИЯ

ПРИЧИНЫ РАЗВИТИЯ АТЕЛЕКТАЗА:
(1) миорелаксация,
(2) увеличение (FiО2),
(3) подавление вздоха.

Закон Лапласа (1806)

Закон Лапласа позволяет объяснить
увеличение PaО2:
P = 2T/r
где Р обозначает давление (в данном случае PaО2); T поверхностное натяжение; r, радиус.
Когда радиус альвеолы ​уменьшается при ателектазе, давление,
необходимое для наполнения альвеолы увеличивается. МРА
обеспечивают высокое давление, необходимое для повторной
мобилизации коллабированных альвеол.

РЕФЛЕКС ВЗДОХА

В 1964 году Bendixen и соавторы 2 обнаружили, что бодрствующие
мужчины и женщины вздыхают в среднем около 9 и 10 раз в час.
Рефлекс вздоха - нормальный гомеостатический рефлекс.
Рефлекторные влияния с ирритантных рецепторов (расположенны
в субэпителиальном пространстве дыхательных путей и
выполняют функцию одновременно механо- и хеморецепторов). В
нормальных условиях ирритантные рецепторы возбуждаются при
понижении легочной вентиляции, и в этом случае объем легких
уменьшается. В этом случае возбуждаются ирритантные
рецепторы, которые вызывают форсированный вдох ("вздох").
Вздох сводит к минимуму альвеолярно-артериальный (A-a)
градиент напряжения кислорода.
Вздох высвобождает новые порции поверхностно-активного
вещества и равномерно распределяет его на альвеолярной
поверхности в дистальных дыхательных путях.
Bendixen H.H., Smith G.M., Mead J.Pattern of ventilation in young adults. J Appl Physiol. 1964
Mar;19:195-8.

РЕФЛЕКС ВЗДОХА

В 1964 году Bendixen и соавторы выдвинули гипотезу, что
постоянная вентиляция с адекватными, но статическими
дыхательными объемами у анестезированных пациентов
ведет к прогрессирующему ателектазу и увеличению
шунта, когда отсутствуют вздохи.
Они показали, что в среднем давление кислорода
артериальной крови падает на 22%, а легочный комплайнс
на 15% при отсутствии вздохов.
После нескольких минут медленного, глубокого,
устойчивого дыхания, давление кислорода в
артериальной крови повысилось в среднем на 150 мм рт.
ст., уменьшая шунт, создаваемый статическим ДО.

«РО-5» является объемным респиратором,
предназначенным, для проведения
длительной автоматической искусственной и
вспомогательной вентиляции легких во время
наркоза или реанимации. В отличие от РО-3,
аппарат РО-5 позволяет изменять
соотношение вдоха и выдоха в пределах
1:1,3; 1:2 и 1:3; регулировать параметры
дыхания в более широких пределах; более
удобно устанавливать дыхательный объем,
проводить ручную вентиляцию легких с
использованием открытой, полуоткрытой и
полузакрытой дыхательных систем. В нем
имеются газоструйный отсос,
ПРИСПОСОБЛЕНИЯ ДЛЯ
АВТОМАТИЧЕСКОГО ПЕРИОДИЧЕСКОГО
РАСПРАВЛЕНИЯ ЛЕГКИХ, а также для
проведения вспомогательной вентиляции
легких. РО-5 комплектуется наркозным
блоком типа "Наркон-П".

Кому?

Общая анестезия
Гипоксемическая ОДН (ОРДС)
После санации ТБД

КЛИНИЧЕСКИЕ СОСТОЯНИЯ, СВЯЗАННЫЕ С ОРДС У ДЕТЕЙ

Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury.
Pediatrics. 2009;124(1):87-95.
Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP. Incidence and short-term outcome of acute
lung injury in mechanically ventilated children. Eur Respir J. 2003;22(6):980-5.

КОГДА? АНАЛИЗ ПОКАЗАНИЙ ДЛЯ РЕКРУИТМЕНТА (F.J.J. Halbertsma et al., 2007)

Патологическое
состояние
Педиатрические
ОРИТ
Неонатальные
ОРИТ
Неадекватная
оксигенация
88%
85%
Ателектазы
50%
43%
Высокие показатели
FiO2
25%
43%
Состояния,
приводящие к
снижению ПДКВ
(разгермитизация
контура, санация ТБД)
80%
46%
183.1 Режимы традиционной вентиляции.
3.1.1 Нет данных о влиянии режима ИВЛ на исходы у
пациентов с PARDS.
3.2.1 Дыхательный объем
При любой управляемой ИВЛ у детей использовать ДО в
диапазоне физиологичных значений для возраста/веса тела
(т.е. 5-8 мл/кг массы тела предсказанный) в зависимости от
патологии легких и комплайнса дыхательной системы.
3.2.2 Использовать ДО для каждого конкретного пациента в
зависимости от тяжести заболевания. ДО 3-6 мл/кг
расчетной массы тела для пациентов с низким комплайнсом
дыхательной системы и ближе к физиологическим диапазон (5-8 мл/кг идеальной массы тела) для пациентов с
более сохранным комплайнсом дыхательной системы.
3.2.3 Ограничение давления плато
При отсутствии возможности измерения
транспульмонального давления, предел давления плато на
вдохе 28 см H2O и более высокие давления плато (29-32cm
H2O) у пациентов с повышенной жесткостью грудной клетки
(то есть, уменьшение комплайнса грудной клетки).
The Pediatric Acute Lung Injury Consensus Conference Group, 20153.3 ПДКВ/Маневры мобилизации
альвеол
3.3.1 Умеренное повышение PEEP (10-15
см H2O). Титруют под контролем оксигенации и гемодинамической
реакции у больных с тяжелым PARDS.
3.3.2 Уровни PEEP более 15 см H2O могут быть необходимы при
тяжелом PARDS, но при этом внимание должно быть уделено
ограничению давления плато!!!
3.3.3 Маркеры доставки кислорода, комплайнса респираторной
системы, и гемодинамики должны тщательно мониторироваться при
увеличении PEEP.
3.3.4 Должны быть проведены клинические исследования для оценки
влияния повышенного PEEP на исход в педиатрической популяции.
3.3.5 Осторожно использовать маневры по
мобилизации альвеол в попытке улучшить
оксигенацию медленным пошаговым
увеличением и снижением PEEP. Маневры
удлинения вдоха не могут быть рекомендованы
из-за отсутствия доступных данных.
The Pediatric Acute Lung Injury Consensus Conference Group, 2015

МЕТОДИКИ ПРОВЕДЕНИЯ РЕКРУИТМЕНТА

21

МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ДАВЛЕНИЯ В ДЫХАТЕЛЬНЫХ ПУТЯХ, СОЗДАВАЕМЫЕ ВО ВРЕМЯ МАНЕВРА РЕКРУИТМЕНТА (F.J.J. Halbertsma et al., 2007)

Параметр
Педиатрические
ОРИТ
Неонатальные
ОРИТ
Положительное
давление конца
выдоха, см H2O
28,3±7,5
9,2 ±1,1
Положительное
давление на вдохе,
см H2O
46,7±12,1
35,8±4,9
22

Кривые «давление-объем» при здоровых легких (слева) и при ОРДС (справа)

При ОРДС повреждение легких приводит к снижению комлайенса, ФОЕ уменьшена, при этом кривая
"объем-давление" сдвинута вправо. Применение ПДКВ при ОРДС, когда снижен
комплайенс легких позволяет удерживать кривую «давление-объем» в выгодном положении, т.е. таким
образом, чтобы дыхательный объем колебался между нижней и верхней точками перегиба.

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ МАНЕВРА РЕКРУИТМЕНТА

24

КТ ЛЕГКИХ, ПОЛУЧЕННЫЕ ПРИ ТРАССИРОВКЕ КРИВОЙ В СТАТИЧЕСКИХ УСЛОВИЯХ

Рекруитмент начинается только выше нижней точки перегиба (LIP) на кривой вдоха и
продолжается до максимального давления даже выше верхней точки перегиба (UIP).
Дерекруитмент начинается, когда давление в ДП уменьшается до точки максимальной
кривизны (PMC) и продолжается по всей остальной части кривой выдоха.

Показатель
Характеристика
Возраст, г
4,8 (1-14)
Число мальчиков
11 (52%)
Первичный РДС
15 (71%)2
Аспирационная
пневмония
2 (13%)
Инфекционная
пневмония
11 (73%)
Утопление
2 (13%)
Вторичный РДС
6 (29%)
Сепсис
4 (66%)
Применение АИК
2 (33%)
1 вертикальная черта = 1 этап маневра,
длительность которого составила 1 минуту

1. Седация, анальгезия и миоплегия
2. Положительное давление на вдохе (PIP) =
15 см Н2О от PEEP = constanta
3. Стартовый уровень PEEP = 8 см Н2О
4. Пошаговое увеличение PEEP на 2 см Н2О
каждую минуту до достижения
максимального давления в дыхательных
путях (PIP + PEEP) = 45 см Н2О или
снижения показателей комплайнса
5. Постепенное пошаговое снижение на 2 см
Н2О каждую минуту до достижения давления
критической точки закрытия альвеол
6. Подбор оптимального уровня PEEP =
давление критической точки закрытия
альвеол + 2 см Н2О
7. Повторное проведение маневра
рекруитмента для достижения давления
открытия альвеол (в течение 2 минут) с
последующей коррекций параметров ИВЛ

а – различия статистически значимы (р<0,05) по сравнению с показателями до маневра б – различия статистически значимы (р<0,01) по сравнению с по

ПОКАЗАТЕЛИ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ ВО
ВРЕМЯ ПРОВЕДЕНИЯ МАНЕВРА
Показатель
До
маневра
После
маневра
Через 4 часа
после маневра
Через 12 часов
после маневра
Среднее давление в
дыхательных путях, см
Н2 О
14
(11-17)
13
(10-19)
13
(11-17)
13
(11-15)
Максимальное давление в
дыхательных путях, см
Н2О
31
(25-36)
29
(23-33)
26а
(21-30)
26а
(21-29)
Динамический комплайнс
легких, мл/см Н2О
8
(3-12)
9
(2-11)
5
(2-14)
5
(3-14)
Частота дыхания,
число/минуту
24
(20-29)
21
(18-28)
29б
(27-35)
29б
(25-33)
Концентрация кислорода
в дыхательной смеси, %
0,6
(0,45-0,65)
0,6а
(0,5-1,0)
0,5
(0,45-0,6)
0,5
(0,4-0,6)
а
б
<0,05) по сравнению с показателями до маневра
– различия статистически значимы (р<0,01) по сравнению с показателями до маневра

IO = (MAP x FiO2 x 100%)/PaO2

Маневр мобилизации альвеол у детей с СОПЛ/ОРДС
способствует улучшению оксигенации и оказывает
положительное влияние на показатели газообмена в
течение 12 часов после его проведения

Alveolar recruitment maneuver in mechanic ventilation pediatric intensive care unit children Neves V.C., Koliski A., Giraldi D.J. Rev Bras Ter Intensiva. 2009; 21(4):453-460

1.
Седация, анальгезия и
миоплегия
2. Положительное давление на
вдохе (PIP) = 15 см Н2О от PEEP
= constanta
3. Стартовый уровень PEEP = 10
см Н2О
4. Пошаговое увеличение PEEP
на 5 см Н2О каждые две минуты
до достижения максимального
давления в дыхательных путях
(PIP + PEEP) = 50 см Н2О
5. Постепенное пошаговое
снижение на 5 см Н2О каждые
две минуты до достижения
исходного уровня = 10 см Н2О

МОНИТРИНГ:ЧСС,
инвазивное АД, SaO2,
и механика дыхания.
Постоянная инфузия
мидазолама (1.5–5
мг/кг/мин) и фентанила
(1–3 мг/кг/ч), чтобы
добиться оценки 17-26
баллов по шкале
COMFORT.
За 20 мин до РМ
преоксигенация 100%
О2 в течение 5 минут.
Векуроний (0,1 мг/кг).

Протокол МР и титрования PEEP
Старт с 10 см H2O PEEP, сохраняя постоянное раздувающее давление - 15
см Н2О. МР осуществляется последовательно при увеличении PEEP 5 см Н2О
каждые 2 мин до достижения 25 см H2O PEEP. PEEP титрование основано на
оценке газометрии и механики легких.

Выводы: RM безопасен и хорошо
переносятся гемодинамически
стабильными детьми с ОРДС.
RM и пошаговый подбор параметров ПДКВ
могут улучшить функцию легких у
пациентов с ОРДС и тяжелой гипоксемией.

Среди 2,449 детей,
принимающих участие в
анализе, 353 пациентов (14%)
получали HFOV, из которых 210
(59%) - HFOV начатую в
течение 24-48 часов после
интубации. Раннее
использование HFOV было
связано с большей
длительностью ИВЛ
(отношение рисков 0.75; 95%
ДИ, 0.64-0.89; р = 0,001), но не
со смертностью (отношение
шансов, 1.28; 95% ДИ, 0.921.79; Р = 0.15), по сравнению с
CMV/поздней HFOV.

Перед рандомизацией все
дети находились на ИВЛ с
FiO2 -1, PEEP 12 см Н2О,
получали инфузионную
терапию для поддержания
высокого ЦВД (диапазон от 8
до 12 мм рт. ст.) и в основном
на инотропной и
вазпрессорной поддержке во
время RM при ИВЛ или
HFOV. Все дети были
седатированы и
релаксированы.

Использовали осциллятор SensorMedics (3100A / B) (VIASyS, США).
Поршень останавливали, при этом ребенок дышал в СPAP.
Стартовали с МАР (среднее давление в дыхательных путях) 30 см
H2O (или 35 см H2O для детей с МТ > 35 кг), непрерывное
растягивающее давление поддерживали в течение 20 с (или 30 с
для детей с МТ > 35 кг).
Затем, поршень запускали и постепенно доводили МАР до
целевого уровня (+ 5-8 см H2O выше предыдущего MAP при
конвекционной ИВЛ). Другие настройки вентилятора
корректировали исходя из клинического опыта. Начальные
параметры Δ P (амплитуда осцилляторных колебаний) были
установлены на уровне 3 × МАР при конвекционной механической
вентиляции, а частоту устанавливали в соответствии с возрастом.
FiO2 постепенно поэтапно снижали, чтобы поддерживать SpO2
выше 92%. RM повторяли, если SpO2 был ниже 95% при 100% FiO2
От 1. Газы артериальной крови брали через 1 ч после маневра.

У 9 детей группы CV использовали вентиляторы
Servo I или Bennett 840. Протокол RM
комбинировали с HFOV или CV у всех
исследованных пациентов (использовали 15-20 см
H2O PEEP, расправляющее давление 20 см Н2О, со
снижением PEEP через 2 мин, титруя пошагово
чтобы добиться наилучшего соответствия
параметров. Затем устанавливали PEEP на + 2 см
H2O выше этого уровня, и снижали PIP, чтобы
добиться уровня ДО 6-8 мл/кг).
Исходные данные клинических характеристик,
оксигенации, гемодинамических параметров и
клинических результатов регистрировали во время
процедуры и через 1, 4, 12, 24 и 48 ч после RM.

Наблюдалось значительное
увеличение PaO2/FiO2 (119,2 ± 41,1,
49,6 ± 30,6, P = 0,01 *) после 1 часа
RM с HFOV по сравнению с CV.
Исследование показало
преимущество HFOV по
сравнению с CV при RM
у детей с тяжелым
ОРДС. Существенного
влияние на
гемодинамические
параметры не
выявлено. Серьезных
осложнений отмечено
не было.

КРИТЕРИИ ВКЛЮЧЕНИЯ:
Проведение радикальной операции по поводу ВПС
Отсутствие операций на сердце в анамнезе
сАД ЛА ≥ 25 mmHg, установленное по ЭХО-КГ или ангиокардиографии и
подтвержденное интраоперационно инвазивно в ЛА после открытия перикарда и до
проведения других хирургических манипуляций

СТАРТОВЫЕ ПАРАМЕТРЫ ИВЛ
ИВЛ в режиме контроля по давлению (Nikkei vent.)
ДО 7-10 мл/кг
PEEP 5 см H2O
Соотношение вдоха к выдоху 1:2
ЧД по контролю PaCO2 в артериальной крови с
целевым значением 35-45 mmHg
Применялся рутинный контроль CO2 на выдохе
Катетеры устанавливались в бедренную артерию и
внутренную яремную вену

Один из этапов операции предполагает полное
отключение пациента от аппарата ИВЛ и
разгерметизацию контура
После завершения манипуляций с сердцем легкие
расправлялись тремя-пятью ручными вдохами с
пиковым давлением в 40 см H2O
Механическая вентиляция продолжалась со
стартовыми параметрами до наложения кожных
швов, гемодинамика стабилизировалась
применением милринона и норадреналина,
входящих в стандартный протокол операции, после
чего применялся маневр рекруитмента

МЕТОДИКА ПРОВЕДЕНИЯ МАНЕВРА
МР выполняли в 3 стадии, каждая
длится по 30 секунд:
На 1 стадии PIP до 30 H2O и PEEP до
10 см H2O
На 2 стадии только PEEP до 35 см
H2O
На 3 стадии PEEP снижали до 15 см
H2O
Интервалы между стадиями длились
по 1 минуте, для стабилизации
параметров ИВЛ

Значимое сАД ЛА наблюдалось во
время 2 и 3 стадий МР, но после
завершения маневра наблюдалось его
снижение до исходных значений.
Не наблюдалось никаких нарушений
дыхания или гемодинамики, не было
кризов повышения давления в ЛА
Неповрежденная плевральная
полость была у 5 пациентов (50%), по
Rg-данным из ОРИТ, у всех пациентов
легкие были расправлены и имели
однородную структуру, без данных за
пневмоторакс или ателектаз.
ИВЛ продолжалась в среднем 23 часа
(от 5 до 192 часов)

SI- продленное раздувание CPAP 40 cm H2O на 40 сек + подбор PEEP,
SRS – ступенчатая стратегия рекруитмента - давление 15 см H2O выше
PEEP. Внимание должно быть уделено РаСО2.

51 новорожденный
1.
2.
3.
4.
1.
2.
3.
4.
срок гестации 28-32 недели
вес более 1000 г
РДС
традиционная ИВЛ с рождения
Критерии исключения:
прогнозируемая продолжительность ИВЛ менее
24 часов;
ЭНМТ;
длительность заболевания более 72 часов;
ВПР, СУВ, ПП ЦНС.
50

ХАРАКТЕРИСТИКА ПАЦИЕНТОВ

I группа
Купирование артериальной
гипоксемии с применением
маневра рекруитмента
альвеол
II группа
Купирование артериальной
гипоксемии без применения
маневра рекруитмента
альвеол
n = 24
Мальчики 15
Девочки 9
масса тела 1343 г (1060-1540)
Апгар 1 = 4,8 (4,0-6,0)
Апгар 5 = 5,7(5,0-6,0)
n =27
Мальчики 16
Девочки 11
масса тела 1801 г (1500-2080)
Апгар 1 = 5,4 (5,0-7,0)
Апгар 5 = 5,9 (5,0-7,0)
91,6%(22) – эндотрахеальное
введение сурфактанта
(«Curosurf», 200мг/кг).
81,5%(22) – эндотрахеальное
введение сурфактанта
(«Curosurf», 200мг/кг).
66,7%(16) - антенатальная
профилактика (дексон, 24 мг)
66,7%(18) - антенатальная
профилактика (дексон, 24 мг)
51

РЕСПИРАТОРНАЯ ПОДДЕРЖКА

Параметр
I группа
II группа
Фракция кислорода в дыхательной смеси, %
48,6 (45-50)
45 (40-55)
Положительное давление на вдохе, см H2O
17,4 (16-18)
18 (17-18)
5,0 (4-5)
4,0 (3,0-4,0)
37 (34-40)
36 (30-40)
0,3 (0,28-0,31)
0,32 (0,3-0,34)
12 (11-12)
11 (9-13)
Положительное давление в конце выдоха, см
H2O
Частота дыхания, число/минуту
Время вдоха, с
Среднее давление в дыхательных путях, см H2O
«Babylog 8000+» (Draeger, Германия),
«Servo I» (Maquet, Швеция),
«Hamilton-G5» (Hamilton Medical, Швейцария)
52

МЕТОДИКА

Установка PEEP на уровне нижней точки
перегиба кривой «давление-объём»
Объем
Пошаговое увеличение PIP до нормализации
формы кривой «давление-объем»
Увеличение PEEP до уровня LIP+2 см H2O
Пошаговое снижение PIP
Достижение стартовых показателей PIP
Давление
Пошаговое снижение PEEP
53

ПОКАЗАТЕЛИ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ И БИОМЕХАНИКИ НА РАЗНЫХ ЭТАПАХ МАНЕВРА

Показател
и
FiО2
%
РаО2
мм рт.ст.
PIP, см Н2О
PEEP, см Н2О
Сdyn, мл/см2
Delta P
(PIP- PEEP)
ДО выдоха,
мл/кг
I этап
II этап
III этап
IV этап
V этап
VI этап
47,8
(40-50)
47,8
(40-50)
47,8
(40-50)
36,4
(30,5-41,7)
58,8
(42,7-74,3)
97,8
(55,7-138,5)
68,2
(50,9-85,5)
58,5
(39,2-77,8)
53,5
(44,1-62,9)
16,9
(16-18)
16,8
(16-18)
24,7*
(22,5-26,9)
16,9
(16-18)
16,9
(16-18)
16,9
(16-18)
4,7
(4-5)
6,7
(6,2-7,3)
6,7
(6,2-7,3)
8,7
(8,2-9,3)
6,7
(6,2-7,3)
6,7
(6,2-7,3)
0,48
(0,37-0,61)
0,48
(0,37-0,61)
0,89
(0,8-0,96)
1,45*
(1,08-1,8)
1,63
(1,36-2,5)
1,54*
(1,14-1,94)
12,2
(11-13)
12,2
(11-13)
18*
(17-19)
10,2
(9,0-12)
10,2
(9,0-12)
25,8*
(21-30)
5,1
(3,2-5,5)
6,5*
(4,6-7,6)
Время вдоха, с
0,3
0,3
0,3
0,3
0,3
0,3
f, число/минуту
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
МАР, см Н2О
12,1
(11-13)
12,1
(11-13)
13,1
(12,7-13,6)
13,1
(12,7-13,6)
8,7
(8-9,5)
8,7*
(8-9,5)

ОСЛОЖНЕНИЯ

ГИПОТОНИЯ (12%). Два механизма нестабильности
гемодинамики: во-первых, повышение давления в
дыхательных путях приводит к уменьшению
венозного возврата и преднагрузки правого
желудочка. Второе, увеличение альвеолярного
давления, в свою очередь вызывает повышение
легочного сосудистого сопротивления и
постнагрузки правого желудочка.
ДЕСАТУРАЦИЯ (9%)
БАРОТРАВМА (1%).
Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute
lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156-63.

ОСНОВНЫЕ ПРОТИВОПОКАЗАНИЯ

нестабильность гемодинамики (гипотония),
возбуждение,
хроническая обструктивная болезнь легких,
односторонние болезни легких,
предыдущие пневмэктомии,
бронхоплевральные свищи,
Hemoptisis (примесь крови в мокроте),
не дренированный пневмоторакс,
внутричерепная гипертензия
и длительная механическая вентиляция
Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, et al. Reversibility of lung
collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med.
2006;174(3):268-78.
Gaudencio AMAS, Barbas CSV, Troster EJ, Carvalho. Recrutamento pulmonar. In: Carvalho WB,
Hirschheimer MR, Proenзa Filho JO, Freddi NA, Troster EJ, editores. Ventilaзгo pulmonar mecвnica
em neonatologia e pediatria. 2a ed. Sгo Paulo: Atheneu; 2005. p. 33-40.

ВЫВОДЫ

Выполнение маневра наиболее эффективно при
ранних стадиях ОРДС.
Более длительное время стабилизации альвеол
достигается если осуществляется контроль
давления и применяется понижающее титрование
ПДКВ.
Нет доказательств эффективности от использования
РМ для улучшения прогноза при ОРДС и, у больных
с тяжелой гипоксемией. Необходим
индивидуальный подход к каждому ребенку.

(Continuous positive pressure ventilation - CPPV - Positive end-expiratory pressure - PEEP). При этом режиме давление в дыхательных путях во время конечной фазы выдоха не снижается до 0, а удерживается на заданном уровне (рис. 4.6). ПДКВ достигается при помощи специального блока, встроенного в современные респираторы. Накоплен очень большой клинический материал, свидетельствующий об эффективности данного метода. ПДКВ применяется при лечении ОДН, связанной с тяжелыми легочными заболеваниями (РДСВ, распространенные пневмонии, хронические обструктивные заболевания легких в стадии обострения) и отеком легких. Однако доказано, что ПДКВ не уменьшает и даже может увеличивать количество внесосудистой воды в легких. В то же время режим ПДКВ способствует более физиологическому распределению газовой смеси в легких, снижению венозного шунта, улучшению механических свойств легких и транспорта кислорода. Имеются данные о том, что ПДКВ восстанавливает активность сурфактанта и уменьшает его бронхоальвеолярный клиренс.

Рис. 4.6. Режим ИВЛ с ПДКВ.
Кривая давления в дыхательных путях.

При выборе режима ПДКВ следует иметь в виду, что он может существенно уменьшить СВ. Чем больше конечное давление, тем существеннее влияние этого режима на гемодинамику. Снижение СВ может наступить при ПДКВ 7 см вод.ст. и более, что зависит от компенсаторных возможностей сердечно-сосудистой системы. Повышение давления до 12 см вод.ст. способствует значительному возрастанию нагрузки на правый желудочек и увеличению легочной гипертензии. Отрицательные эффекты ПДКВ могут во многом зависеть от ошибок в его применении. Не следует сразу создавать высокий уровень ПДКВ. Рекомендуемый начальный уровень ПДКВ - 2-6 см вод.ст. Повышение давления в конце выдоха следует проводить постепенно, «шаг за шагом» и при отсутствии должного эффекта от установленной величины. Повышают ПДКВ на 2-3 см вод.ст. не чаще, чем каждые 15-20 мин. Особенно осторожно повышают ПДКВ после 12 см вод.ст. Наиболее безопасный уровень показателя - 6-8 см вод.ст., однако это не означает, что данный режим оптимален в любой ситуации. При большом венозном шунте и выраженной артериальной гипоксемии может потребоваться более высокий уровень ПДКВ с ВФК 0,5 и выше. В каждом конкретном случае величину ПДКВ выбирают индивидуально! Обязательным условием является динамическое исследование газов артериальной крови, рН и параметров центральной гемодинамики: сердечного индекса, давления наполнения правого и левого желудочков и общего периферического сопротивления. При этом следует учитывать также и растяжимость легких.
ПДКВ способствует «раскрытию» нефункционирующих альвеол и ателектатических участков, вследствие чего улучшается вентиляция альвеол, которые вентилировались недостаточно или не вентилировались совсем и в которых происходило шунтирование крови. Положительный эффект ПДКВ обусловлен увеличением функциональной остаточной емкости и растяжимости легких, улучшением вентиляционно-перфузионных отношений в легких и уменьшением альвеолярно-артериальной разности по кислороду.
Правильность уровня ПДКВ может быть определена по следующим основным показателям:
отсутствие отрицательного влияния на кровообращение;
увеличение растяжимости легких;
уменьшение легочного шунта.
Основным показанием к ПДКВ служит артериальная гипоксемия, не устраняемая при других режимах ИВЛ.

Характеристика режимов ИВЛ с регуляцией по объему:
важнейшие параметры вентиляции (ДО и MOB), как и отношение длительности вдоха и выдоха, устанавливает врач;
точный контроль адекватности вентиляции с выбранной FiО2 осуществляется путем анализа газового состава артериальной крови;
установленные объемы вентиляции независимо от физических характеристик легких не гарантируют оптимального распределения газовой смеси и равномерности вентиляции легких;
для улучшения вентиляционно-перфузионных отношений рекомендуется периодическое раздувание легких или проведение ИВЛ в режиме ПДКВ.


0

Одной из основных задач отделения реанимации и интенсивной терапии (ОРИТ) является обеспечение адекватной респираторной поддержки. В связи с этим, для специалистов, работающих в данной области медицины, особенно важно правильно ориентироваться в показаниях и видах искусственной вентиляции легких (ИВЛ).

Показания к искусственной вентиляции легких

Основным показанием для искусственной вентиляции легких (ИВЛ) является наличие у больного дыхательной недостаточности. Прочие показания включают длительное пробуждение пациента после анестезии, нарушения сознания, отсутствие защитных рефлексов, а также усталость дыхательной мускулатуры. Главная цель искусственной вентиляции легких (ИВЛ) - улучшить газообмен, уменьшить работу дыхания и избежать осложнений при пробуждении больного. Независимо от показания к искусственной вентиляции легких (ИВЛ), основное заболевание должно быть потенциально обратимым, в противном случае невозможно отлучение от искусственной вентиляции легких (ИВЛ).

Дыхательная недостаточность

Наиболее частым показанием для респираторной поддержки служит дыхательная недостаточность. Это состояние возникает в тех ситуациях, когда происходит нарушение газообмена, приводящее к гипоксемии. может встречаться изолированно или сочетаться с гиперкапнией. Причины дыхательной недостаточности могут быть различными. Так, проблема может возникнуть на уровне альвеолокапиллярной мембраны (отек легких), дыхательных путей (перелом ребер) и т.д.

Причины дыхательной недостаточности

Неадекватный газообмен

Причины неадекватного газообмена:

  • пневмония,
  • отек легких,
  • острый респираторный дистресс-синдром (ОРДС).

Неадекватное дыхание

Причины неадекватного дыхания:

  • повреждение грудной стенки:
    • перелом ребер,
    • флотирующий сегмент;
  • слабость дыхательной мускулатуры:
    • миастения, полиомиелит,
    • столбняк;
  • угнетение центральной нервной системы:
    • психотропные препараты,
    • дислокация ствола головного мозга.
Нарушение проходимости дыхательных путей

Причины нарушения проходимости дыхательных путей:

  • обструкция верхних дыхательных путей:
    • круп,
    • отек,
    • опухоль;
  • обструкция нижних дыхательных путей (бронхоспазм).

В ряде случаев показания к искусственной вентиляции легких (ИВЛ) трудно определить. В этой ситуации следует руководствоваться клиническими обстоятельствами.

Основные показания к искусственной вентиляции легких

Выделяют следующие основные показания к искусственной вентиляции легких (ИВЛ):

  • Частота дыханий (ЧД) >35 или < 5 в мин;
  • Усталость дыхательной мускулатуры;
  • Гипоксия - общий цианоз, SaO2 < 90% при дыхании кислородом или PaO 2 < 8 кПа (60 мм рт. ст.);
  • Гиперкапния - PaCO 2 > 8 кПа (60 мм рт. ст.);
  • Снижение уровня сознания;
  • Тяжелая травма грудной клетки;
  • Дыхательный объем (ДО) < 5 мл/кг или жизненная емкость легких (ЖЕЛ) < 15 мл/кг.

Прочие показания к искусственной вентиляции легких (ИВЛ)

У ряда больных искусственная вентиляция легких (ИВЛ) проводится в качестве компонента интенсивной терапии состояний, не связанных с патологией дыхания:

  • Контроль внутричерепного давления при черепно-мозговой травме;
  • Защита дыхательных путей ();
  • Состояние после сердечно-легочной реанимации;
  • Период после длительных и обширных хирургических вмешательств или тяжелой травмы.

Виды искусственной вентиляции легких

Наиболее частым режимом искусственной вентиляции легких (ИВЛ) является вентиляция с перемежающимся положительным давлением (intermittent positive pressure ventilation - IPPV). При этом режиме легкие раздуваются под действием положительного давления, генерируемого вентилятором, газоток доставляется через эндотрахеальную или трахеостомическую трубку. Интубацию трахеи выполняют, как правило, через рот. При продленной искусственной вентиляции легких (ИВЛ) пациенты в ряде случаев лучше переносят назотрахеальную интубацию. Тем не менее, назотрахеальную интубацию технически сложнее выполнить; кроме того, она сопровождается более высоким риском кровотечений и инфекционных осложнений (синусит).

Интубация трахеи не только позволяет проводить IPPV, но и снижает объем "мертвого пространства"; кроме того, она облегчает туалет дыхательных путей. Однако, если пациент адекватен и доступен контакту, искусственную вентиляцию легких (ИВЛ) можно проводить неинвазивным способом через плотно подогнанную носовую или лицевую маску.

В принципе, в отделении реанимации и интенсивной терапии (ОРИТ) используются два типа вентиляторов - регулируемые по заранее установленному дыхательному объему (ДО) и по давлению на вдохе. Современные аппараты искусственной вентиляции легких (ИВЛ) обеспечивают различные типы искусственной вентиляции легких (ИВЛ); с клинической точки зрения важно подобрать тот вид искусственной вентиляции легких (ИВЛ), который наиболее подходит данному конкретному пациенту.

Типы искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) по объему

Искусственная вентиляция легких (ИВЛ) по объему осуществляется в тех случаях, когда вентилятор доставляет в дыхательные пути больного заранее установленный дыхательный объем независимо от выставленного на респираторе давления. Давление в дыхательных путях определяется податливостью (жесткостью) легких. Если легкие жесткие, давление резко повышается, что может вести к риску баротравмы (разрыва альвеол, который приводит к пневмотораксу и эмфиземе средостения).

Искусственная вентиляция легких (ИВЛ) по давлению

Искусственная вентиляция легких (ИВЛ) по давлению заключается в том, что аппарат искусственной вентиляции легких (ИВЛ) достигает заранее заданный уровень давления в дыхательных путях. Таким образом, доставляемый дыхательный объем определяется податливостью легких и сопротивлением дыхательных путей.

Режимы искусственной вентиляции легких

Контролируемая искусственная вентиляция легких (ИВЛ) (controlled mechanical ventilation - CMV)

Данный режим искусственной вентиляции легких (ИВЛ) определяется исключительно установками респиратора (давление в дыхательных путях, дыхательный объем (ДО), частоту дыхания (ЧД), отношение вдоха к выдоху - I:E). Этот режим не очень часто используется в отделениях реанимации и интенсивной терапии (ОРИТ), так как не обеспечивает синхронизации со спонтанным дыханием больного. В результате CMV не всегда хорошо переносится пациентом, что требует седатации или назначения миорелаксантов для прекращения "борьбы с вентилятором" и нормализации газообмена. Как правило, режим CMV широко применяется в операционной в ходе анестезиологического пособия.

Вспомогательная искусственной вентиляции легких (ИВЛ) (assisted mechanical ventilation - AMV)

Существует несколько режимов вентиляции, позволяющих поддержать попытки спонтанных дыхательных движений больного. При этом вентилятор улавливает попытку вдоха и поддерживает ее.
У данных режимов есть два основных преимущества. Во-первых, они лучше переносятся больным и снижают потребность в седативной терапии. Во-вторых, они позволяют сохранить работу дыхательных мышц, что предотвращает их атрофию. Дыхание больного поддерживается за счет заранее установленного давления на вдохе или дыхательного объема (ДО).

Выделяют несколько разновидностей вспомогательной вентиляции:

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV)

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV) является сочетанием спонтанных и принудительных дыхательных движений. Между принудительными вдохами больной может дышать самостоятельно, без вентиляторной поддержки. Режим IMV обеспечивает минимальную минутную вентиляцию, однако может сопровождаться значительными вариациями между принудительными и спонтанными вдохами.

Синхронизированная перемежающаяся принудительная вентиляция (synchronized intermittent mechanical ventilation - SIMV)

При этом режиме принудительные дыхательные движения синхронизируются с собственными дыхательными попытками больного, что обеспечивает ему больший комфорт.

Вентиляция с поддержкой давлением (pressure-support ventilation - PSV или assisted spontaneous breaths - ASB)

При попытке собственного дыхательного движения в дыхательные пути подается заранее установленный по давлению вдох. Этот вид вспомогательной вентиляции обеспечивает больному наибольший комфорт. Степень поддержки давлением определяется уровнем давления в дыхательных путях и может постепенно снижаться в ходе отлучения от искусственной вентиляции легких (ИВЛ). Принудительных вдохов не подается, и вентиляция целиком зависит от того, может ли больной осуществлять попытки самостоятельного дыхания. Таким образом, режим PSV не обеспечивает вентиляции легких при апноэ; в этой ситуации показано его сочетание с SIMV.

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP)

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP) используется при всех видах IPPV. На выдохе поддерживается положительное давление в дыхательных путях, что обеспечивает раздувание спавшихся участков легких и предотвращает ателектазирование дистальных дыхательных путей. В результате улучшаются . Тем не менее, PEEP приводит к повышению внутригрудного давления и может снизить венозный возврат, что приводит к снижению артериального давления, особенно на фоне гиповолемии. При использовании PEEP до 5-10 см вод. ст. эти отрицательные эффекты, как правило, поддаются коррекции путем инфузионной нагрузки. Постоянное положительное давление в дыхательных путях (continuous positive airway pressure - CPAP) эффективно в той же степени, что и PEEP, но применяется, главным образом, на фоне спонтанного дыхания.

Начало искусственной вентиляции легких

В начале искусственной вентиляции легких (ИВЛ) ее основной задачей является обеспечение больного физиологически необходимыми дыхательным объемом (ДО) и частотой дыхания (ЧД); их величины адаптированы к исходному состоянию больного.

Начальные установки вентилятора для искусственной вентиляции легких
FiO 2 В начале искусственной вентиляции легких (ИВЛ) 1,0, затем - постепенное снижение
PEEP 5 см вод. ст.
Дыхательный объем (ДО) 7-10 мл/кг
Давление на вдохе
Частота дыхания (ЧД) 10-15 в мин
Поддержка давлением 20 см вод. ст. (на 15 см вод. ст. выше PEEP)
I:E 1:2
Триггер потока 2 л/мин
Триггер давления От -1 до -3 см вод. ст.
"Подвздохи" Ранее предназначались для профилактики ателектазов, в настоящий момент их эффективность оспаривается
Эти установки изменяют в зависимости от клинического состояния и комфорта больного

Оптимизация оксигенации при искусственной вентиляции легких

При переводе больного на искусственную вентиляцию легких (ИВЛ), как правило, рекомендуют изначально устанавливать FiO 2 = 1,0 с последующим снижением этого показателя до той его величины, которая позволила бы поддерживать SaO 2 > 93%. В целях профилактики повреждения легких, обусловленного гипероксией, необходимо избегать поддержания FiO 2 > 0,6 в течение длительного времени.

Одним из стратегических направлений по улучшению оксигенации без повышения FiO 2 может служить увеличение среднего давления в дыхательных путях. Этого можно добиться путем повышения PEEP до 10 см вод. ст. или, при вентиляции, контролируемой по давлению, путем увеличения пикового давления на вдохе. Однако следует помнить о том, что при повышении этого показателя > 35 см вод. ст. резко возрастает риск баротравмы легких. На фоне тяжелой гипоксии () может потребоваться применение дополнительных методов респираторной поддержки, направленных на улучшение оксигенации. Одним из таких направлений служит дальнейшее увеличение PEEP > 15 см вод. ст. Кроме того, может быть использована стратегия низких дыхательных объемов (6-8 мл/кг). Следует помнить, что применение этих методик может сопровождаться артериальной гипотензией, которая наиболее часто встречается у больных, получающих массивную инфузионную терапию и инотропную / вазопрессорную поддержку.

Еще одно из направлений респираторной поддержки на фоне гипоксемии - увеличение времени вдоха. В норме отношение вдоха к выдоху составляет 1:2, при нарушениях оксигенации оно может быть изменено до 1:1 или даже 2:1. Следует помнить, что увеличение времени вдоха может плохо переноситься теми пациентами, которые требуют седации. Снижение минутной вентиляции может сопровождаться повышением PaCO 2 . Эта ситуация получила название "пермиссивная гиперкапния". С клинической точки зрения она не представляет особых проблем за исключением тех моментов, когда необходимо избежать повышения внутричерепного давления. При пермиссивной гиперкапнии рекомендуется поддерживать pH артериальной крови выше 7,2. При тяжелом ОРДС может быть использовано положение на животе, позволяющее улучшить оксигенацию путем мобилизации спавшихся альвеол и улучшения соотношения между вентиляцией и перфузией легких. Однако это положение затрудняет мониторинг за пациентом, поэтому его необходимо применять достаточно осторожно.

Улучшение элиминации углекислого газа при искусственной вентиляции легких

Выведение углекислого газа можно улучшить за счет увеличения минутного объема вентиляции. Этого можно достичь путем увеличения дыхательного объема (ДО) или частоты дыхания (ЧД).

Седация при искусственной вентиляции легких

Большинство пациентов, находящихся на искусственной вентиляции легких (ИВЛ), требуют для того, чтобы адаптироваться к пребыванию эндотрахеальной трубки в дыхательных путях. В идеале должна назначаться лишь легкая седация, при этом пациент должен оставаться контактным и, в то же время, адаптированным к вентиляции. Кроме того, необходимо, чтобы на фоне седации больной был способен осуществлять попытки самостоятельных дыхательных движений, чтобы исключить риск атрофии дыхательных мышц.

Проблемы в ходе искусственной вентиляции легких

"Борьба с вентилятором"

При десинхронизации с респиратором в ходе искусственной вентиляции легких (ИВЛ) отмечается падение дыхательного объема (ДО), обусловленное повышением сопротивления на вдохе. Это приводит к неадекватной вентиляции и гипоксии.

Различают несколько причин десинхронизации с респиратором:

  • Факторы, обусловленные состоянием больного - дыхание, направленное против вдоха со стороны аппарата искусственной вентиляции легких (ИВЛ), задержка дыхания, кашель.
  • Снижение податливости легких - патология легких (отек легких, пневмония, пневмоторакс).
  • Увеличение сопротивления на уровне дыхательных путей - бронхоспазм, аспирация, избыточная секреция трахеобронхиального дерева.
  • Дисконнекция вентилятора или , утечка, неисправность аппаратуры, закупорка эндотрахеальной трубки, ее перекрут или дислокация.

Диагностика проблем с вентиляцией

Высокое давление в дыхательных путях в результате обструкции эндотрахеальной трубки.

  • Пациент мог пережать трубку зубами - введите воздуховод, назначьте седативные препараты.
  • Обструкция дыхательных путей в результате избыточной секреции - проведите отсасывание содержимого трахеи и при необходимости лаваж трахеобронхиального дерева (5 мл физиологического раствора NaCl). Если необходимо, реинтубируйте больного.
  • Эндотрахеальная трубка сместилась в правый главный бронх - подтяните трубку назад.

Высокое давление в дыхательных путях в результате внутрилегочных факторов:

  • Бронхоспазм? (хрипы на вдохе и выдохе). Убедитесь в том, что эндотрахеальная трубка не введена слишком глубоко и не стимулирует карину. Назначьте бронходилататоры.
  • Пневмоторакс, гемоторакс, ателектаз, плевральный выпот? (неравномерные экскурсии грудной клетки, аускультативная картина). Проведите рентгенографию грудной клетки и назначьте соответствующее лечение.
  • Отек легких? (Пенистая мокрота, с кровью, и крепитация). Назначьте диуретики, терапию сердечной недостаточности, аритмии и т.д.

Факторы седатации / анальгезии:

  • Гипервентиляция вследствие гипоксии или гиперкапнии (цианоз, тахикардия, артериальная гипертензия, потоотделение). Увеличьте FiO2 и среднее давление в дыхательных путях, используя PEEP. Увеличьте минутную вентиляцию (при гиперкапнии).
  • Кашель, дискомфорт или боль (повышение ЧСС и АД, потоотделение, выражение лица). Оцените возможные причины дискомфорта (нахождение эндотрахеальной трубки, полный мочевой пузырь, боль). Оцените адекватность анальгезии и седации. Перейдите на тот режим вентиляции, который лучше переносится больным (PS, SIMV). Миорелаксанты следует назначать только в тех случаях, когда исключены все остальные причины десинхронизации с респиратором.

Отлучение от искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) может осложняться баротравмой, пневмонией, снижением сердечного выброса и рядом других осложнений. В связи с этим, необходимо прекратить искусственную вентиляцию легких (ИВЛ) как можно быстрее, как только позволяет клиническая ситуация.

Отлучение от респиратора показано в тех случаях, когда в состоянии пациента отмечается положительная динамика. Многие больные получают искусственную вентиляцию легких (ИВЛ) в течение короткого промежутка времени (например, после длительных и травматичных оперативных вмешательств). У ряда пациентов, напротив, искусственная вентиляция легких (ИВЛ) проводится в течение многих дней (например, ОРДС). При длительной искусственной вентиляции легких (ИВЛ) развиваются слабость и атрофия дыхательной мускулатуры, в связи с этим скорость отучения от респиратора во многом зависит от длительности искусственной вентиляции легких (ИВЛ) и характера ее режимов. Для предотвращения атрофии дыхательных мышц рекомендованы вспомогательные режимы вентиляции и адекватная нутритивная поддержка.

Больные, восстанавливающиеся после критических состояний, относятся к группе риска по возникновению "полинейропатии критических состояний". Это заболевание сопровождается слабостью дыхательной и периферической мускулатуры, снижением сухожильных рефлексов и сенсорными нарушениями. Лечение симптоматическое. Есть данные, свидетельствующие о том, что длительное назначение миорелаксантов из группы аминостероидов (векурониум) может вызвать персистирующий мышечный паралич. В связи с этим, векурониум не рекомендован для длительной нервно-мышечной блокады.

Показания для отлучения от искусственной вентиляции легких

Решение о начале отлучения от респиратора часто является субъективным и основывается на клиническом опыте.

Однако наиболее частыми показаниями к отлучению от искусственной вентиляции легких (ИВЛ) являются следующие состояния:

  • Адекватная терапия и положительная динамика основного заболевания;
  • Функция дыхания:
    • ЧД < 35 в мин;
    • FiO 2 < 0,5, SaO2 > 90%, PEEP < 10 см вод. ст.;
    • ДО > 5 мл/кг;
    • ЖЕЛ > 10 мл/кг;
  • Минутная вентиляция < 10 л/мин;
  • Отсутствие инфекции или гипертермии;
  • Стабильность гемодинамики и ВЭБ.

Перед началом отлучения от респиратора не должно быть признаков остаточной нервно-мышечной блокады, доза седативных препаратов должна быть сведена к минимуму, позволяющему поддерживать адекватный контакт с пациентом. В том случае, если сознание пациента угнетено, при наличии возбуждения и отсутствии кашлевого рефлекса, отлучение от искусственной вентиляции легких (ИВЛ) малоэффективно.

Режимы отлучения от искусственной вентиляции легких

До сих пор остается неясным, какой из методов отлучения от искусственной вентиляции легких (ИВЛ) является наиболее оптимальным.

Различают несколько основных режимов отлучения от респиратора:

  1. Тест на спонтанное дыхание без поддержки аппарата искусственной вентиляции легких (ИВЛ). Временно отключают аппарат искусственной вентиляции легких (ИВЛ) и подключают к интубационной трубке Т-образный коннектор или дыхательный контур для проведения СРАР. Периоды спонтанного дыхания постепенно удлиняют. Таким образом, пациент получает возможность для полноценной работы дыхания с периодами отдыха при возобновлении искусственной вентиляции легких (ИВЛ).
  2. Отлучение с помощью режима IMV. Респиратор доставляет в дыхательные пути больного установленный минимальный объем вентиляции, который постепенно снижают, как только пациент в состоянии увеличить работу дыхания. Аппаратный вдох при этом может синхронизироваться с собственной попыткой вдоха (SIMV).
  3. Отлучение с помощью поддержки давлением. При этом режиме аппарат подхватывает все попытки вдоха больного. Этот метод отлучения предусматривает постепенное снижение уровня поддержки давлением. Таким образом, пациент становится ответственным за увеличение объема спонтанной вентиляции. При снижении уровня поддержки давлением до 5-10 см вод. ст. выше PEEP можно начать тест на спонтанное дыхание с Т-образным коннектором или СРАР.

Невозможность отлучения от искусственной вентиляции легких

В процессе отлучения от искусственной вентиляции легких (ИВЛ) необходимо пристально наблюдать за больным, чтобы своевременно выявить признаки усталости дыхательной мускулатуры или неспособности к отлучению от респиратора. Эти признаки включают в себя беспокойство, одышку, снижение дыхательного объема (ДО) и нестабильность гемодинамики, в первую очередь, тахикардию и артериальную гипертензию. В этой ситуации необходимо увеличить уровень поддержки давлением; часто на восстановление дыхательной мускулатуре требуются многие часы. Оптимально начать отлучение от респиратора в утреннее время, чтобы обеспечить надежный мониторинг за состоянием больного в течение дня. При затянувшемся отлучении от искусственной вентиляции легких (ИВЛ) рекомендуют на ночной период увеличивать уровень поддержки давлением, чтобы обеспечить адекватный отдых пациента.

Трахеостомия в отделении интенсивной терапии

Наиболее частое показание к трахеостомии в ОРИТ - облегчение продленной искусственной вентиляции легких (ИВЛ) и процесса отлучения от респиратора. Трахеостомия позволяет снизить уровень седации и таким образом улучшает возможность контакта с больным. Кроме того, она обеспечивает эффективный туалет трахеобронхиального дерева у тех пациентов, кто неспособен к самостоятельному дренажу мокроты в результате ее избыточной продукции или слабости мышечного тонуса. Трахеостомия может проводиться в операционной, как и другая хирургическая процедура; кроме того, ее можно выполнять в палате ОРИТ у постели больного. Для ее проведения широко используется . Время для перехода с интубационной трубки на трахеостому определяется индивидуально. Как правило, трахеостомию осуществляют, если высока вероятность длительной искусственной вентиляции легких (ИВЛ) или возникают проблемы с отучением от респиратора. Трахеостомия может сопровождаться рядом осложнений. К ним относятся блокада трубки, ее диспозиция, инфекционные осложнения и кровотечение. Кровотечение может непосредственно осложнить хирургическое вмешательство; в отдаленном послеоперационном периоде оно может носить эрозийный характер за счет повреждения крупных кровеносных сосудов (например, безымянной артерии). Прочие показания к трахеостомии - обструкция верхних дыхательных путей и защита легких от аспирации при угнетении гортанно-глоточных рефлексов. Кроме того, трахеостомия может выполняться как часть анестезиологического или хирургического пособия при ряде вмешательств (например, при ларингэктомии).


Понравилась медицинская статья, новость, лекция по медицине из категории

Конечно-экспираторное давление (PEEP) по мере нарастания накапливаемого объема газа в альвеолах увеличивается. Поскольку в данном случае нет реальных условий, препятствующих продвижению объема выдоха по дыхательным путям (открытая бесклапанная система, крайне низкий объем аппаратного мертвого пространства), то логично предположить, что увеличение конечно-экспираторного давления осуществляется за счет повышения альвеолярного давления, которое формируется на выдохе перед началом последующего вдоха.

Его величина связана только с объемом газа, остающегося в альвеолах, который, в свою очередь, зависит от растяжимости легких и аэродинамического сопротивления дыхательных путей, что носит название «постоянной времени легких» (произведение растяжимости на сопротивление дыхательных путей) и влияет на время заполнения и опорожнения альвеол. Поэтому, в отличие от PEEP (positive end expiratory pressure), положительное альвеолярное давление, являясь «внутренним», относительно независимым от внешних условий, в литературе носит название auto-PEEP

Этот тезис находит себе подтверждение при анализе динамики данных параметров при различных частотах ВЧС . На рисунке представлены результаты регистрации PEEP и auto-PEEP при нарастающих частотах вентиляции в условиях приблизительно одинакового дыхательного объема и отношения I: Е= 1: 2.
По мере увеличения частоты вентиляции отмечается неуклонное возрастание обоих параметров (диаграмма А). Причем удельный вес auto-PEEP в составе конечно-экспираторного давления составляет 60-65%.

На величину auto-PEEP , помимо частоты вентиляции, оказывает влияние также продолжительность фаз дыхательного цикла I:Е.
Частотный уровень проявления auto-PEEP находится в прямой зависимости от частоты вентиляции и продолжительности экспираторной фазы дыхательного цикла.

Приведенные выше данные позволяют констатировать , что при ВЧС ИВЛ конечно-экспираторное давление (PEEP) тесно связано с auto-PEEP и, как auto-PEEP, зависит от продолжительности выдоха и объема оставшейся в альвеолах газовой смеси после его прекращения. Это обстоятельство позволяет сделать вывод, что при ВЧС ИВЛ основу конечного экспираторного давления составляет альвеолярное давление.
Данное заключение подтверждается результатами корреляционного анализа взаимовлияния PEEP и auto-PEEP с другими параметрами респираторной механики.

Корреляционные связи auto-PEEP с другими параметрами механики дыхания теснее, чем у PEEP. Особенно отчетливо это проявляется при сравнении коэффициентов корреляции дыхательного объема (VT), что является еще одним подтверждением установленной ранее природы и закономерности возникновения auto-PEEP.

Приведенные выше факты позволяют утверждать , что при отсутствии выраженной обструкции дыхательных путей конечно-экспираторное давление, определяемое современными струйными респираторами, является не чем иным, как альвеолярным давлением (auto-PEEP), но зарегистрированным не на уровне альвеол, а в проксимальных отделах дыхательного контура. Поэтому величины этих давлений существенно различаются. По нашим данным, уровень auto-PEEP может превышать величины PEEP в полтора и более раз.
Следовательно, по уровню PEEP нельзя получить корректную информацию о состоянии альвеолярного давления и степени гиперинфляции. Для этого необходимо иметь информацию об auto-PEEP.

Что такое PEEP (positive end expiratory pressure), и для чего оно нужно?

PEEP (ПДКВ - положительное давление конца выдоха) было придумано для борьбы с ЭЗДП (экспираторное закрытие дыхательных путей) по-английски Air trapping (дословно – воздушная ловушка).


У пациентов с ХОБЛ (хроническая обструктивная болезнь легких, или COPD – chronic obstructive pulmonary disease, просвет бронхов уменьшается за счет отека слизистой оболочки. При выдохе мышечное усилие дыхательной мускулатуры через ткань легких передается на внешнюю стенку бронха, ещё больше уменьшая его просвет. Часть бронхиол, не имеющих каркаса из хрящевых полуколец, пережимается полностью. Воздух не выдыхается, а запирается в легких, как ловушке (происходит Air trapping). Последствия – нарушения газообмена и перерастяжение (hyperinflation) альвеол.


Было замечено, что индийские йоги и другие специалисты по дыхательной гимнастике при лечении пациентов с бронхиальной астмой широко практикуют медленный выдох с сопротивлением (например с вокализацией, когда на выдохе пациент поёт «и-и-и-и» или «у-у-у-у», или выдыхает через трубку, опущенную в воду). Таким образом, внутри бронхиол создается давление, поддерживающее их проходимость. В современных аппаратах ИВЛ PEEP создается с помощью регулируемого или даже управляемого клапана выдоха.

В дальнейшем выяснилось, что у PEEP может быть ещё одно применение:


Recruitment (мобилизация спавшихся альвеол).

При ОРДС (острый респираторный дистресc-синдром, ARDS – acute respiratory distress syndrome) часть альвеол находится в «слипшемся» состоянии и не участвует в газообмене. Это слипание происходит из-за нарушения свойств легочного сурфактанта и патологической экссудации в просвет альвеол. Recruitment – это такой маневр управления аппаратом ИВЛ, при котором за счет правильного подбора давления на вдохе, длительности вдоха и повышения PEEP добиваются расправления слипшихся альвеол. После завершения Recruitment manever (маневр мобилизации альвеол) для поддержания альвеол в расправленном состоянии, ИВЛ продолжается с использованием PEEP.

АутоПДКВ (AutoPEEP Intrinsic PEEP) возникает, когда настройки аппарата ИВЛ (частота дыханий, объём и длительность вдоха) не соответствуют возможностям пациента. В этом случае пациент до начала нового вдоха не успевает выдохнуть весь воздух предыдущего вдоха. Соответственно давление в конце выдоха (end expiratory pressure) оказывается значительно более positive, чем хотелось бы. Когда сформировалось преставление об АутоПДКВ (Auto PEEP, Intrinsic PEEP или iPEEP), договорились под понятием PEEP понимать то давление, которое создает в конце выдоха аппарат ИВЛ, а для обозначения суммарного ПДКВ введен термин Total PEEP.

Total PEEP=AutoPEEP+PEEP АутоПДКВ в англоязычной литературе может быть названо:

  • Inadvertent PEEP – непреднамеренное ПДКВ,
  • Intrinsic PEEP – внутреннее ПДКВ,
  • Inherent PEEP – естественное ПДКВ,
  • Endogenous PEEP – эндогенное ПДКВ,
  • Occult PEEP – скрытое ПДКВ,
  • Dynamic PEEP – динамическое ПДКВ.

На современных аппаратах ИВЛ существует специальный тест или программа для определения величины AutoPEEP.

ПДКВ (PEEP) измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар = 0,9806379 см водного столба.

В настоящее время существует большое количество приспособлений для респираторной терапии и создания PEEP, не являющихся аппаратами ИВЛ (например: дыхательная маска с пружинным клапаном).

PEEP – это опция, которая встраивается в различные режимы ИВЛ.

CPAP constant positive airway pressure (постоянное положительное давление в дыхательных путях). В данной опции constant следует понимать как физический или математический термин: «всегда одинаковый». Умный аппарат ИВЛ PPV при включении этой опции, виртуозно «играя» клапанами вдоха и выдоха, будет поддерживать в дыхательном контуре постоянное одинаковое давление. Логика управления опцией CPAP работает в соответствии с сигналами с датчика давления. Если пациент вдыхает, клапан вдоха приоткрывается насколько необходимо, чтобы поддержать давление на заданном уровне. При выдохе, в соответствии с управляющей командой, приоткрывается клапан выдоха, чтобы выпустить из дыхательного контура избыточный воздух.


На рисунке А представлен идеальный график давления при CPAP.

В реальной клинической ситуации аппарат ИВЛ не успевает мгновенно среагировать на вдох и выдох пациента – рисунок Б.

Обратите внимание на то, что во время вдоха отмечается небольшое снижение давления, а во время выдоха – повышение.

В том случае, если опцией CPAP дополнен какой-либо режим ИВЛ, более правильно называть её Baseline pressure, поскольку во время аппаратного вдоха pressure (давление) уже не constant.
Baseline pressure или просто Baseline на панели управления аппарата ИВЛ обычно, по традиции, обозначается как PEEP/CPAP и является тем заданным уровнем давления в дыхательном контуре, которое аппарат будет поддерживать в интервалах между дыхательными циклами. Понятие Baseline pressure, по современным представлениям, наиболее адекватно определяет данную опцию аппарата ИВЛ, но важно знать, что принцип управления для PEEP, CPAP и Baseline одинаков. На графике давления – это один и тот же сегмент на оси «Y», и, по сути дела, мы можем рассматривать PEEP, CPAP и Baseline как синонимы. В том случае, если PEEP=0, это ZEEP (zero end expiratory pressure), и Baseline соответствует атмосферному давлению.