Главная · Болезни желудка · Нейроны по функции. Молекулы радости: как наш мозг создает нейронные связи и формирует привычки и интеллект. Морфологическая характеристика дендритической зоны

Нейроны по функции. Молекулы радости: как наш мозг создает нейронные связи и формирует привычки и интеллект. Морфологическая характеристика дендритической зоны

Организм человека представляет собой сложную систему, в работе которой принимает участие множество отдельных блоков и компонентов. Внешне устройство тела видится элементарным и даже примитивным. Однако если заглянуть глубже и попытаться выявить схемы, по которым происходит взаимодействие между разными органами, то на первый план выйдет нервная система. Нейрон, являющийся основной функциональной единицей этой структуры, выступает в качестве передатчика химических и электрических импульсов. Несмотря на внешнее сходство с другими клетками, он выполняет более сложные и ответственные задачи, поддержка которых важна для психофизической деятельности человека. Для понимания особенностей данного рецептора стоит разобраться с его устройством, принципами работы и задачами.

Что такое нейроны?

Нейрон является специализированной клеткой, которая способна принимать и обрабатывать информацию в процессе взаимодействия с другими структурно-функциональными единицами нервной системы. Количество данных рецепторов в мозге составляет 10 11 (сто миллиардов). При этом один нейрон может содержать более 10 тысяч синапсов - чувствительных окончаний, посредством которых и происходят С учетом того, что данные элементы могут рассматриваться в качестве блоков, способных хранить информацию, можно сделать вывод о содержать огромные объемы информации. Также нейроном называется структурная единица нервной системы, обеспечивающая работу органов чувств. То есть рассматривать данную клетку следует как многофункциональный элемент, предназначенный для решения различных задач.

Особенности нейронной клетки

Виды нейронов

Основная классификация предполагает разделение нейронов по структурному признаку. В частности, ученые выделяют безаксонные, псевдоуниполярные, униполярные, мультиполярные и биполярные нейроны. Надо сказать, что некоторые из этих видов пока мало изучены. Это относится к безаксонным клеткам, которые группируются в области спинного мозга. Также ведутся споры в отношении униполярных нейронов. Есть мнения, что подобные клетки и вовсе не присутствуют в теле человека. Если же говорить о том, какие нейроны преобладают в организме высших существ, то на первый план выйдут мультиполярные рецепторы. Это клетки, располагающие сетью дендритов и одним аксоном. Можно сказать, это классический нейрон, наиболее часто встречающийся в нервной системе.

Заключение

Нейронные клетки являются неотъемлемой составляющей человеческого организма. Именно благодаря этим рецепторам обеспечивается ежедневное функционирование сотен и тысяч химических передатчиков в теле человека. На современном этапе развития наука дает ответ на вопрос о том, что такое нейроны, но при этом оставляет и пространство для будущих открытий. К примеру, на сегодняшний день есть разные мнения относительно некоторых нюансов работы, роста и развития клеток этого типа. Но в любом случае изучение нейронов является одной из главнейших задач нейрофизиологии. Достаточно сказать, что новые открытия в этой области способны пролить свет на более эффективные способы лечения многих психических заболеваний. Кроме того, глубокое понимание принципов работы нейронов позволит разрабатывать средства, стимулирующие умственную деятельность и улучшающие память в новом поколении.

озг, восстанови себя

Н а протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и.

Нейробиологи на протяжении десятков лет ищут способы улучшить состояние мозга. Стратегия лечения основывалась на восполнении недостатка нейромедиаторов - химических веществ, передающих сообщения нервным клеткам (нейронам). При болезни Паркинсона, например, мозг больного теряет способность вырабатывать нейромедиатор дофамин, поскольку производящие его клетки гибнут. Химический «родственник» дофамина, L-Допа, может временно облегчить состояние больного, но не излечить его. Для замены нейронов, погибающих при таких неврологических заболеваниях, как болезни Гентингтона и Паркинсона, и при травмах, нейробиологи пытаются имплантировать стволовые клетки, полученные из эмбрионов. В последнее время исследователи заинтересовались нейронами, полученными из эмбриональных стволовых клеток человека, которые при определенных условиях можно заставить образовывать в чашках Петри любые типы клеток человеческого организма.

Несмотря на то что у стволовых клеток много преимуществ, очевидно, следует развивать способности взрослой нервной системы к самовосстановлению. Для этого необходимо ввести вещества, стимулирующие мозг к образованию собственных клеток и восстановлению поврежденных нервных цепей.

Новорожденные нервные клетки

В 1960 - 70-х гг. исследователи пришли к выводу, что центральная нервная система млекопитающих способна к регенерации. Первые эксперименты показали, что основные ветви нейронов взрослого головного и - аксоны могут восстанавливаться после повреждения. Вскоре было обнаружено рождение новых нейронов в мозге взрослых птиц, обезьян и людей, т.е. нейрогенез.

Возникает вопрос: если центральная нервная система может образовывать новые, способна ли она восстанавливаться в случае болезни или травмы? Для того чтобы ответить на него, необходимо понять, как происходит нейрогенез во взрослом мозге и каким образом можно его.

Рождение новых клеток происходит постепенно. Так называемые мультипотентные стволовые клетки в мозге периодически начинают делиться, давая начало другим стволовым клеткам, которые могут вырасти в нейроны или опорные клетки, называемые. Но для созревания новорожденные клетки должны избегать влияния мультипотентных стволовых клеток, что удается лишь половине из них - остальные гибнут. Такое расточительство напоминает процесс, происходящий в организме до рождения и в раннем детстве, когда возникает больше нервных клеток, чем необходимо для образования мозга. Выживают только те из них, которые формируют действующие связи с другими.

Станет ли уцелевшая молодая клетка нейроном или глиальной клеткой, зависит от того, в каком участке мозга она окажется и какие процессы будут происходить в этот период. Новому нейрону требуется более месяца, чтобы начать полноценно функционировать. посылать и принимать информацию. Таким образом. нейрогенез представляет собой не одномоментное событие. а процесс. который регулируется веществами. называемыми факторами роста. Например, фактор, названный «звуковой еж» (sonic hedgehog), обнаруженный впервые у насекомых, регулирует способность незрелых нейронов к пролиферации. Фактор notch и класс молекул. названных морфогенетическими протеинами кости, видимо, определяют, станет ли новая клетка глиальной или нервной. Как только это произойдет. другие факторы роста. такие как мозговой нейротрофический фактор (BDNF). нейротрофины и инсулинподобный фактор роста (IGF), начинают поддерживать жизнедеятельность клетки, стимулируя ее созревание.

Место действия

Новые нейроны возникают во взрослом мозге млекопитающих не случайно и. по всей видимости. образуются только в заполненных жидкостью пустотах в - в желудочках, а также в гиппокампе - структуре, спрятанной глубоко в мозге. имеющей форму морского конька. Нейробиологи доказали, что клетки, которым суждено стать нейронами. перемещаются из желудочков в обонятельные луковицы. которые получают информацию от клеток, расположенных в слизистой носа и чувствительных к. Никто точно не знает, почему обонятельной луковице требуется столько новых нейронов. Легче предположить, зачем они нужны гиппокампу: поскольку эта структура важна для запоминания новой информации, дополнительные нейроны, вероятно. способствуют упрочению связей между нервными клетками, повышая способность мозга обрабатывать и хранить сведения.

Процессы нейрогенеза также обнаружены за пределами гиппокампа и обонятельной луковицы, например, в префронтальной коре - обители интеллекта и логики. а также в других областях взрослого головного и спинного мозга . Последнее время появляются все новые подробности о молекулярных механизмах, управляющих нейрогенезом, и о химических стимулах, регулирующих его. и мы вправе надеяться. что со временем можно будет искусственно стимулировать нейрогенез в любой части мозга. Зная, как факторы роста и локальное микроокружение управляют нейрогенезом, исследователи рассчитывают создать методы лечения, позволяющие восстановить больной или поврежденный мозг.

С помощью стимулирования нейрогенеза можно улучшить состояние пациента при некоторых неврологических заболеваниях. Например. причина - закупорка сосудов головного мозга, в результате чего из-за недостатка кислорода гибнут нейроны. После инсульта в гиппокампе начинает развиваться нейрогенез, стремящийся «вылечить» поврежденную ткань мозга с помощью новых нейронов. Большинство новорожденных клеток гибнет, однако некоторые успешно мигрируют к поврежденному участку и превращаются в полноценные нейроны. Несмотря на то что для компенсации повреждений при тяжелом инсульте этого недостаточно. нейрогенез может помочь мозгу после микроинсультов,которые часто проходят незамеченными. Сейчас нейробиологи пытаются применять васкуло-эпидермальный фактор роста (VEGF) и фактор роста фибробластов (FGF) для усиления естественного восстановления.

Оба вещества представляют собой крупные молекулы, которые с трудом преодолевают гематоэнцефалический барьер, т.е. сеть тесно переплетенных клеток, выстилающих кровеносные сосуды мозга. В 1999 г. биотехнологическая компания Wyeth-Ayerst Laboratories and Scios из Калифорнии приостановила клинические испытания FGF применяемого для. поскольку его молекулы не попадали в мозг. Некоторые исследователи пытались решить эту задачу, соединяя молекулу FGF с другой, которая вводила клетку в заблуждение и заставляла ее захватывать весь комплекс молекул и переносить его в ткань мозга. Другие ученые методами генной инженерии создавали клетки, вырабатывающие FGF. и трансплантировали их в мозг. Пока подобные эксперименты проводились лишь на животных.

Стимулирование нейрогенеза может оказаться действенным при лечении депрессии. главной причиной которой (помимо генетической предрасположенности) считается хронический. ограничивающий, как известно. количество нейронов в гиппокампе. Многие из выпускаемых лекарственных средств . показанных при депрессии. в том числе прозак. усиливают нейрогенез у животных. Интересно, что для снятия депрессивного синдрома с помощью этого препарата требуется один месяц - столько же. сколько и для осуществления нейрогенеза. Возможно. депрессия отчасти вызвана замедлением данного процесса в гиппокампе. Последние клинические исследования с применением методов визуализации нервной системы подтвердили. что у пациентов с хронической депрессией гиппокамп меньше, чем у здоровых людей. Длительное применение антидепрессантов. похоже. подстегивает нейрогенез: у грызунов. которым давали эти препараты на протяжении нескольких месяцев. в гиппокампе возникали новые нейроны.

Нейрональные стволовые клетки дают начало новым клеткам мозга. Они периодически делятся в двух основных областях: в желудочках (фиолетовый цвет), которые заполнены спинномозговой жидкостью , питающей центральную нервную систему, и в гиппокампе (голубой цвет) - структуре, необходимой для обучения и памяти. При пролиферации стволовых клеток (внизу) образуются новые ствоповые клетки и клетки-предшественники, которые могут превратиться либо в нейроны, либо в поддерживающие клетки, называемые глиальными (астроциты и дендроциты). Однако дифференцировка новорожденных нервных клеток может произойти только после того, как они уйдут прочь от своих предков (красные стрелки), что удается в среднем лишь половине из них, а остальные гибнут. Во взрослом мозге новые нейроны были обнаружены в гиппокампе и обонятельных луковицах, необходимых для восприятия запахов. Ученые надеются заставить взрослый мозг восстанавливаться, вызывая деление и развитие нейрональных стволовых клеток или клеток-предшественников там и тогда, где и когда это необходимо.

Стволовые клетки как метод лечения

Потенциальным средством для восстановления поврежденного мозга исследователи считают два типа стволовых клеток. Во-первых, нейрональные стволовые клетки взрослого мозга: редкие первичные клетки, сохранившиеся от ранних стадий эмбрионального развития, обнаруженные как минимум в двух областях мозга. Они могут делиться на протяжении всей жизни, давая начало новым нейронам и поддерживающим клеткам, называемым глией. Ко второму типу относятся человеческие эмбриональные стволовые клетки, выделенные из зародышей на очень ранней стадии развития, когда весь эмбрион состоит примерно из ста клеток. Такие эмбриональные стволовые клетки могут давать начало любым клеткам организма.

В большинстве исследований производится наблюдение за ростом нейрональных стволовых клеток в культуральных чашках. Они могут там делиться, их можно генетически пометить и затем трансплантировать назад в нервную систему взрослого индивидуума. В экспериментах, которые пока проводились только на животных, клетки хорошо приживаются и могут дифференцироваться в зрелые нейроны в двух областях мозга, где образование новых нейронов происходит и в норме, - в гиппокампе и в обонятельных луковицах. Однако в других областях нейрональные стволовые клетки, взятые из взрослого мозга, не торопятся становиться нейронами, хотя могут стать глией.

Проблема со взрослыми нейрональными стволовыми клетками состоит в том, что они пока еще незрелые. Если взрослый мозг, в который их пересадили, не будет вырабатывать сигналы, необходимые для стимуляции их развития в определенный тип нейронов - например в гиппокампальный нейрон, - они либо погибнут, либо станут глиальной клеткой, либо так и останутся недифференцированной стволовой клеткой. Для решения этого вопроса необходимо определить, какие биохимические сигналы заставляют нейрональную стволовую клетку стать нейроном данного типа, и затем направить развитие клетки по такому пути прямо в культуральной чашке. Ожидается, что после трансплантации в заданный участок мозга эти клетки останутся нейронами того же типа, сформируют связи и начнут функционировать.

Устанавливая важные связи

Поскольку проходит около месяца с момента деления нейрональной стволовой клетки до тех пор, пока ее потомок не включится в функциональные цепи мозга, роль этих новых нейронов в, вероятно, определяется не столько родословной клетки, сколько тем, как новые и уже существующие клетки соединяются друг с другом (образуя синапсы) и с существующими нейронами, формируя нервные цепи. В процессе синаптогенеза так называемые шипики на боковых отростках, или дендритах, одного нейрона соединяются с основной ветвью, или аксоном, другого нейрона.

Как показывают недавние исследования, дендритные шипики (внизу) могут менять свою форму в течение нескольких минут. Это свидетельствует о том, что синаптогенез может лежать в основе обучения и памяти. Одноцветные микро-фотографии мозга живой мыши (красная, желтая, зеленая и голубая) были сделаны с интервалом в одни сутки. Многоцветное изображение (крайнее справа) представляет собой те же фотографии, наложенные друг на друга. Участки, не претерпевшие изменений, выглядят практически белыми.

Помоги мозгу

Еще одно заболевание, провоцирующее нейрогенез, - болезнь Альцгеймера. Как показали недавние исследования, в органах мыши. которой были введены гены человека, пораженные болезнью Альцгеймера. обнаружены различные отклонения нейрогенеза от нормы. В результате такого вмешательства у животного в избытке вырабатывается мутантная форма предшественника человеческого амилоидного пептида, и уровень нейронов в гиппокампе падает. А гиппокамп мышей с мутантным геном человека. кодирующим белок пресенилин. обладал малым количеством делящихся клеток и. соответственно. меньшим числом выживших нейронов. Введение FGF непосредственно в мозг животных ослабляло тенденцию; следовательно. факторы роста могут стать хорошим средством лечения этого разрушительного заболевания.

Следующий этап исследований - факторы роста, управляющие различными стадиями нейрогенеза (т.е. рождением новых клеток, миграцией и созреванием молодых клеток), а также факторы, тормозящие каждый этап. Для лечения таких заболеваний, как депрессия, при которой снижается количество делящихся клеток, необходимо найти фармакологические вещества или другие методы воздействия. усиливающие пролиферацию клеток. При эпилепсии, видимо. новые клетки рождаются. но затем мигрируют в ложном направлении, и нужно понять. как направить «заблудшие» нейроны по правильному пути. При злокачественной глиоме мозга глиальные клетки пролиферируют и образуют смертельно опасные разрастающиеся опухоли. Хотя причины возникновения глиомы еще не ясны. некоторые полагают. что она возникает в результате неконтролируемого разрастания стволовых клеток мозга. Лечить глиому можно с помощью природных соединений. регулирующих деление таких стволовых клеток.

Для лечения инсульта важно выяснить. какие факторы роста обеспечивают выживание нейронов и стимулируют превращение незрелых клеток в здоровые нейроны. При таких заболеваниях. как болезнь Гентингтона. амиотрофический боковой склероз (АЛС) и болезнь Паркинсона (когда гибнут совершенно конкретные типы клеток, что ведет к развитию специфических когнитивных или моторных симптомов). данный процесс происходит наиболее часто, поскольку клетки. с которыми связаны эти болезни, располагаются в ограниченных областях.

Возникает вопрос: как управлять процессом нейрогенеза при том или ином типе воздействия, чтобы контролировать количество нейронов, поскольку их избыток также представляет опасность? Например, при некоторых формах эпилепсии нейрональные стволовые клетки продолжают делиться даже после того, как новые нейроны уже утрачивают способность устанавливать полезные связи. Нейробиологи предполагают, что «неправильные» клетки остаются недозрелыми и оказываются в ненужном месте. формируя т.н. фикальные корковые дисплазии (ФКД), генерирующие эпилептиформные разряды и вызывая эпилептические припадки. Не исключено, что введение факторов роста при инсульте. болезни Паркинсона и других заболеваниях может заставить нейрональные стволовые клетки делиться чересчур быстро и привести к сходным симптомам. Поэтому исследователи должны сначала изучить применение факторов роста для индукции рождения, миграции и созревания нейронов.

При лечении травм спинного мозга, АЛС или необходимо заставить стволовые клетки производить олигодендроциты, одну из разновидностей глиальных клеток. Они необходимы для коммуникации нейронов друг с другом. поскольку изолируют длинные аксоны, проходящие от одного нейрона к другому. предотвращая рассеяние проходящего по аксону электрического сигнала. Известно, что стволовые клетки в спинном мозге обладают способностью время от времени производить олигодендроциты. Исследователи применили факторы роста для стимулирования данного процесса у животных с травмой спинного мозга и получили положительные результаты.

Зарядка для мозга

Одна из важных особенностей нейрогенеза в гиппокампе состоит в том, что персональный индивидуума может влиять на скорость деления клеток, количество выживших молодых нейронов и их способность встраиваться в нервную сеть. Например. когда взрослых мышей переселяют из обычных и тесных клеток в более удобные и просторные. у них происходит значительное усиление нейрогенеза. Исследователи обнаружили, что тренировки мышей в колесе для бега достаточно для того, чтобы удвоить количество делящихся клеток в гиппокампе, что ведет к резкому увеличению числа новых нейронов. Интересно, что регулярная может снять депрессию у людей. Возможно. это происходит благодаря активации нейрогенеза.

Если ученые научатся управлять нейрогенезом, то наши представления о заболеваниях и травмах мозга кардинально изменятся. Для лечения можно будет использовать вещества, избирательно стимулирующие определенные этапы нейрогенеза. Фармакологическое воздействие будет сочетаться с физиотерапией, усиливающей нейрогенез и стимулирующей определенные области мозга к встраиванию в них новых клеток. Учет взаимосвязей между нейрогенезом и умственной и физической нагрузками позволит снизить риск возникновения неврологических заболеваний и усилить природные репаративные процессы в мозге.

Путем стимуляции роста нейронов в мозге здоровые люди получат возможность улучшить состояние своего организма. Однако вряд ли им понравятся инъекции факторов роста, с трудом проникающих сквозь гематоэнцефалический барьер после введения в кровоток. Поэтому специалисты ищут препараты. которые можно было бы выпускать в виде таблеток. Подобное лекарство позволит стимулировать работу генов, кодирующих факторы роста, непосредственно в мозге человека.

Улучшить деятельность мозга возможно также путем генной терапии и трансплантации клеток: искусственно выращенные клетки, производящие конкретные факторы роста. можно имплантировать в определенные области мозга человека. Также предлагается вводить в организм человека гены, кодирующие производство различных факторов роста, и вирусы. способные доставить эти гены до нужных клеток мозга.

Пока не ясно. какой из методов окажется наиболее перспективным. Исследования, проведенные на животных, показывают. что применение факторов роста может нарушить нормальное функционирование мозга. Процессы роста могут вызвать образование опухолей, а трансплантированные клетки - выйти из под контроля и спровоцировать развитие рака. Такой риск может быть оправдан только при тяжелых формах болезни Гентингтона. Альцгеймера или Паркинсона.

Оптимальный способ стимулирования деятельности мозга - интенсивная интеллектуальная деятельность в сочетании со здоровым образом жизни: физическая нагрузка. хорошее питание и полноценный отдых . Экспериментально подтверждается и то. что на связи в мозге влияет окружающая среда. Возможно. когда-нибудь в жилых домах и офисах люди будут создавать и поддерживать специально обогащенную среду для улучшения функционирования мозга.

Если удастся понять механизмы самовосстановления нервной системы, то в скором будущем исследователи овладеют методами. позволяющими использовать собственные ресурсы мозга для его восстановления и совершенствования.

Фред Гейдж

(В мире пауки, № 12, 2003)

Клетка является стержнем биологического организма. Нервная система человека состоит из клеток головного и спинного мозга (нейронов). Они весьма многообразны по строению, обладают огромным количеством различных функций, направленных на существование человеческого организма как биологического вида.

В каждом нейроне одновременно протекают тысячи реакций, направленных на поддержание обмена веществ самой нервной клетки и осуществление ее главных функций - обработки и анализа огромного массива поступающей информации, а также генерации и отправки команд другим нейронам, мышцам, различным органам и тканям организма. Слаженная работа сочетаний нейронов коры головного мозга составляет основу мышления и сознания.

Функции клеточной мембраны

Важнейшими структурными компонентами нейронов, как и любых других клеток, являются клеточные мембраны. Они имеют обычно многослойное строение и состоят из особого класса жировых соединений - фосфолипидов, а также из пронизывающих их...

Нервная система является самой сложной и мало изученной частью нашего организма. Она состоит из 100 миллиардов клеток – нейронов, и глиальных клеток, которых примерно в 30 раз больше. К нашему времени ученым удалось изучить только 5% нервных клеток. Все остальные пока загадка, которую медики стараются разгадать любыми методами.

Нейрон: строение и функции

Нейрон – главный структурный элемент нервной системы, эволюционировавший с нейроефекторных клеток. Функция нервных клеток заключается в ответе на раздражители сокращением. Это клетки, которые способны передавать информацию с помощью электрического импульса, химическим и механическим путями.

За исполняющими функциями нейроны бывают двигательными, чувствительными и промежуточными. Чувствительные нервные клетки передают информацию от рецепторов в головной мозг, двигательные – к мышечным тканям . Промежуточные нейроны способны выполнять и ту, и другую функции.

Анатомически нейроны состоят из тела и двух...

Возможность успешного лечения детей с нарушениями психоневрологического развития базируется на следующих свойствах организма ребенка и его нервной системы:

1. Регенеративные способности самого нейрона, его отростков и нейрональных сетей, входящих в состав функциональных систем . Медленный транспорт цитоскелета по отросткам нервной клетки со скоростью 2 мм/сутки обусловливает и регенерацию поврежденных или недоразвитых отростков нейронов с той же скоростью. Гибель части нейронов и их дефицит в нейрональной сети более или менее полноценно компенсируется запуском аксо-дендритного ветвления сохранившихся нервных клеток с образованием новых дополнительных межнейрональных связей.

2. Компенсация повреждений нейронов и нейрональных сетей в мозге за счет подключения соседних нейрональных групп к выполнению утраченной или недоразвитой функции. Здоровые нейроны, их аксоны и дендриты, как активно работающие, так и резервные, в борьбе за функциональную территорию...

озг, восстанови себя

На протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась память?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и спинного мозга.

Однако за последние пять лет нейробиологи открыли, что мозг все же меняется в течение жизни: происходит образование новых клеток, позволяющих справиться с возникающими трудностями. Такая пластичность помогает мозгу восстанавливаться после травмы или заболевания, увеличивая свои потенциальные возможности.

Нейробиологи на протяжении десятков лет ищут способы улучшить...

Нейроны головного мозга формируются в период пренатального развития . Происходит это за счет разрастания определенного вида клеток, их передвижений, а затем дифференцирования, во время которого они меняют свою форму, размер и функции. Большая часть нейронов гибнет еще во время внутриутробного развития, многие продолжают это делать после рождения и на протяжении всей жизни человека, что заложено генетически. Но вместе с этим явлением происходит и другое – восстановление нейронов в некоторых мозговых отделах.

Процесс, при котором происходит формирование нервной клетки (как в пренатальном периоде, так и жизненном), носит название «нейрогенез».

Широко известное утверждение, что нервные клетки не восстанавливаются когда-то сделал в 1928 году Сантьяго Рамон-И-Халем – испанский ученый-нейрогистолог. Это положение просуществовало до конца прошлого века пока не появилась научная статья Э. Гоулд и Ч. Кросса, в которой приводились факты, доказывающие продуцирование новых...

Нейроны головного мозга разделяются по классификации на клетки с определенным типом функций. Но, возможно, после исследований из Института Дьюка, которые ведет адьюнкт-профессор клеточной биологии, педиатрии и нейробиологии Чай Куо появится новая структурная единица (Chay Kuo).

Он описал клетки головного мозга, которые самостоятельно способны передавать информацию и инициировать преобразование. Механизм их действия в воздействии одним из типов нейронов в субвентрикулярной (ее же называют субэпендимальной) зоне на нейральную стволовую клетку. Она начинает преобразовываться в нейрон. Открытие интересно тем, что доказывает: восстановление нейронов головного мозга становится реальностью для медицины.

Теория Чай Куо

Исследователь отмечает, что о возможности развития нейрона говорили и до него, но он впервые нашел и описывает, что и как включает механизм действия. Клетки нейронов, которые находятся в субвентрикулярной зоне (SVZ) он описывает первым. В зоне мозга...

Восстановление органов и функций организма беспокоит людей в следующих случаях: после разового, но чрезмерного приема алкогольных напитков (застолье по какому-нибудь торжественному поводу) и в ходе реабилитации после алкогольной зависимости, то есть в результате систематического и продолжительного употребления спиртного.

В процессе какого-то обильного застолья (день рождения, свадьба, Новый год, вечеринка и пр.) человек употребляет весьма немалую порцию спиртного в течение минимального отрезка времени. Понятно, что ничего хорошего в такие моменты организм не чувствует. Наибольший вред от таких праздников получают те лица, которые обычно воздерживаются от употребления спиртного или принимают его не часто и в малых дозах. Такие люди очень тяжело переживают восстановление мозга после алкоголя по утрам.

Необходимо знать, что всего лишь 5% спиртного выводится из организма с выдыхаемым воздухом, посредством пото- и мочеотделения. Оставшиеся 95% окисляются внутри...

Препараты для восстановления памяти

Улучшить образование ГАМК в головном мозге помогают аминокислоты: глицин, триптофан, лизин (препараты «глицин», «авитон гинкговита»). Их целесообразно применять со средствами для улучшения мозгового кровоснабжения («кавинтон», «трентал», «винтоцетин») и повышения энергетического обмена нейронов («Коэнзим Q10»). Для стимулирования нейронов во многих странах мира применяется «Гинкго

Улучшить память помогут ежедневные тренировки, нормализация питания и режима дня. Тренировать память можно – каждый день нужно учить небольшие стихотворения, иностранные языки . Не следует перегружать работу мозга. Для улучшения питания клеток, рекомендуют принимать специальные препараты, предназначенные для улучшения памяти.

Эффективные препараты для нормализации и усиления памяти

Дипренил. Препарат, нейтрализующий действие нейротоксинов, попадающих в организм вместе с пищей. Защищает клетки мозга от стресса, поддерживает...

До 90-х годов ХХ века у неврологов существовало стойкое убеждение, что регенерация мозга невозможна. В научном сообществе было сформулировано ложное представление о «стационарных» тканях, к которым в первую очередь отнесли ткань центральной нервной системы, где якобы отсутствуют стволовые клетки. Считали, что делящиеся нервные клетки можно наблюдать лишь в некоторых мозговых структурах плода, а у детей лишь в первые два года жизни. Затем предполагали, что рост клеток прекращается и начинается этап формирования межклеточных контактов в нейронных сетях. В этот период каждый нейрон формирует сотни и, может быть, тысячи синапсов с соседними клетками. В среднем считают, что в нейронных сетях головного мозга взрослого человека функционирует порядка 100 млрд нейронов. Утверждение о том, что взрослый мозг не регенерирует, стало мифом-аксиомой. Ученые, высказывающие иное мнение, обвинялись в некомпетентности, а в нашей стране, бывало, и лишались работы. Природа закладывает в...

Инсульты больше не страшны? Современные разработки…

Все болезни от нервов! Эту народную мудрость знают даже дети. Однако далеко не всем известно, что на языке медицинской науки она имеет конкретное и четко определенное значение. Особенно важно узнать об этом людям, у которых близкие пережили инсульт. Многие из них хорошо знают, что, несмотря на проводимое непростое лечение, утраченные функции у родного человека полностью не восстанавливаются. Кроме того, чем больше времени прошло с момента беды, тем ниже вероятность возвращения речи, движений, памяти. Так как же добиться прорыва в восстановлении близкого человека ? Чтобы ответить на этот вопрос, нужно узнать «врага в лицо» - разобраться в главной причине.

«ВСЕ БОЛЕЗНИ ОТ НЕРВОВ!»

Нервная система координирует все функции организма и обеспечивает ему возможность приспособиться к внешней среде . Головной мозг является ее центральным звеном. Это главный компьютер нашего организма, который регулирует работу всех...

Тема для тех, кому приятнее думать, что нервные клетки восстанавливаются.

Для создания соответствующего мыслеобраза:)

Нервные клетки восстанавливаются

Израильские ученые обнаружили целый биоинструментарий для замены отмерших нервов. Оказалось, что занимаются этим Т-лимфоциты, которых до сих пор считали «вредными чужаками».

Несколько лет назад ученые опровергли знаменитое утверждение «нервные клетки не восстанавливаются»: оказалось, что часть головного мозга работает над восстановлением нервных клеток в течение всей жизни. Особенно при стимулировании мозговой деятельности и физической активности. Но как именно мозг узнает, что пора ускорить процесс регенерации, до сих пор никто не знал.

Чтобы понять механизм восстановления мозга, ученые начали перебирать все виды клеток, которые до того обнаруживались в голове у людей, и причина нахождения который в ней оставалась непонятной. И успешным оказалось изучение одного из подвидов лейкоцитов –...

«Нервные клетки не восстанавливаются» – миф или реальность?

Как говорил герой Леонида Броневого, уездный доктор: «голова - предмет тёмный, исследованию не подлежит…». Компактное скопление нервных клеток, называемое мозгом, хотя и давно исследуется нейрофизиологами, но ответов на все вопросы, связанные с функционированием нейронов ученые получить еще не смогли.

Суть вопроса

Некоторое время назад – вплоть до 90-х годов прошлого века, считалось, что количество нейронов в организме человека имеет постоянную величину и при утрате восстановить поврежденные нервные клетки мозга невозможно. Отчасти это утверждение действительно верно: во время развития эмбриона природой закладывается огромный резерв клеток.

Новорождённый ребенок еще до рождения теряет в результате запрограммированной клеточной гибели – апоптоза, практически 70% из сформировавшихся нейронов. Гибель нейронов продолжается в течение всей жизни.

Начиная с тридцатилетнего возраста этот процесс...

Нервные клетки в головном мозге человека восстанавливаются

До сих пор было известно, что нервные клетки восстанавливаются только у животных. Однако недавно ученые обнаружили, что в отделе мозга человека, который отвечает за обоняние, из клеток-предшественниц образуются зрелые нейроны. Однажды они смогут помочь "починить" травмированный мозг.

Ежедневно кожа прирастает на 0,002 миллиметра. Новые кровяные тельца уже через несколько дней после того, как было запущено их производство в костном мозге , выполняют свои основные функции. С нервными клетками все гораздо проблематичней. Да, нервные окончания восстанавливаются в руках, ногах и в толще кожи. Но в центральной нервной системе – в мозге и спинном мозге – этого не происходит. Поэтому человек с поврежденным спинным мозгом не сможет больше бегать. Кроме того, нервная ткань безвозвратно разрушается в результате инсульта.

Однако недавно появилось новое указание на то, что и человеческий мозг способен на производство новых...

Многие годы люди считали, что нервные клетки неспособны восстанавливаться, значит невозможно излечить многие болезни, связанные с их повреждением. Сейчас учёные нашли способы, как восстановить клетки головного мозга, чтобы продлить пациенту полноценную жизнь, в которой он будет помнить множество подробностей.

Есть несколько условий для восстановления клеток головного мозга, если болезнь не зашла слишком далеко, и не случилось полной потери памяти. Организм должен получать достаточное количество витаминов, которые помогут сохранить возможность сосредотачиваться на какой-то проблеме, запоминать необходимые вещи. Для этого нужно употреблять в пищу продукты, в которых они содержатся, это рыба, бананы, орехи и красное мясо. Специалисты считают, что количество приёмов пищи должно быть не более трёх, а есть нужно до появления сытости, это поможет клеткам мозга получить необходимые вещества . Питание имеет большое значение для профилактики нервных заболеваний , не следует увлекаться...

Крылатое выражение "Нервные клетки не восстанавливаются" все с детства воспринимают как непреложную истину. Однако эта аксиома - не более чем миф, и новые научные данные его опровергают.

Схематическое изображение нервной клетки, или нейрона, которая состоит из тела с ядром, одного аксона и нескольких дендритов.

Нейроны отличаются друг от друга по размеру, разветвленности дендритов и длине аксонов.

Понятие "глии" включает все клетки нервной ткани, не являющиеся нейронами.

Нейроны генетически запрограммированы на миграцию в тот или иной отдел нервной системы, где с помощью отростков они устанавливают связи с другими нервными клетками.

Погибшие нервные клетки уничтожаются макрофагами, попадающими в нервную систему из крови.

Этапы образования нервной трубки в зародыше человека.

‹ ›

Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них...

Пантокальцин – это лекарственный препарат , который активно воздействует на обмен веществ в головном мозге, защищает его от вредных воздействий и в первую очередь от недостатка кислорода, оказывает тормозящее и одновременно легкое активизирующее действие на центральную нервную систему (ЦНС).

Как действует пантокальцин на центральную нервную систему

Пантокальцин – это ноотропный препарат, основное действие которого связано с когнитивными (познавательными) функциями головного мозга, препарат выпускается в таблетках по 250 и 500 мг.

Основным действующим веществом пантокальцина является гопантеновая кислота, которая по своему химическому составу и свойствам имеет сходство с гамма-аминомасляной кислотой (ГАМК) – биологически активным веществом , способным усиливать все обменные процессы в головном мозге.

При приеме внутрь пантокальцин быстро всасывается в желудочно-кишечном тракте , распределяется по тканям и попадает в головной мозг, где проникает...


Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.


Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.


Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Мозг человека имеет одну удивительную особенность: он способен производить новые клетки. Бытует мнение, что запас мозговых клеток неограничен, но это утверждение далеко от истины. Естественно, их интенсивное продуцирование припадает на ранние периоды развития организма, с возрастом этот процесс замедляется, но не останавливается. Но это, к сожалению, компенсирует лишь незначительную часть клеток, неосознанно убитых человеком в результате, на первый взгляд, безобидных привычек.

1. Недосыпание

Ученым пока не удалось опровергнуть свою теорию полноценного сна , которая настаивает на 7-9-часовом сне. Именно такая длительность ночного процесса позволяет мозгу полноценно выполнять свою работу и продуктивно проходить все «сонные» фазы. В противном случае, как показали исследования, проведенные на грызунах, происходит гибель 25 % клеток головного мозга, которые отвечают за физиологическую реакцию на тревогу и напряжение. Ученые полагают, что подобный механизм гибели клеток в результате недосыпания работает и у человека, но это пока лишь предположения, проверить которые, по их мнению, удастся в скором будущем.

2. Курение

Болезни сердца, инсульт, хронический бронхит , эмфизема, рак – это не полный перечень негативных последствий , вызываемый пристрастием к сигарете. Исследования 2002 года, проведенные Национальным институтом Франции по вопросам здравоохранения и медицинских исследований, не оставили сомнений в том, что курение убивает клетки головного мозга. И хотя опыты проводились пока что на крысах, ученые полностью уверенны в том, что точно так же эта вредная привычка сказывается на мозговых клетках человека. Подтверждением тому стало исследование индийских ученых, в результате которого научным сотрудникам удалось отыскать в сигаретах опасное для человеческого организма соединение, называемое никотинопроизводным нитрозоаминовым кетоном. ННК ускоряет реакции белых кровяных клеток головного мозга, заставляя их атаковать здоровые мозговые клетки.

3. Обезвоживание

Не секрет, что в человеческом организме содержится много воды, и мозг – не исключение. Постоянное ее пополнение необходимо как организму в целом, так и мозгу в частности. В противном случае активируются процессы, нарушающие работу целых систем и убивающие клетки головного мозга. Как правило, чаще всего это происходит после приема алкоголя, который подавляет работу гормона вазопрессина, отвечающего за сохранение воды в организме. Помимо этого, обезвоживание может наступить вследствие длительного воздействия на организм высокой температуры (например, пребывание под открытыми солнечными лучами или в душном помещении). Но результат, как и в случае с горячительными напитками, может иметь плачевный исход – разрушение клеток головного мозга. Это влечет за собою сбои в работе нервной системы и влияет на интеллектуальные способности человека.

4. Стресс

Стресс считается достаточно полезной реакцией организма, которая активируется в результате появления какой-либо возможной угрозы. Главными защитниками выступают гормоны надпочечников (кортизол, адреналин и норэпинефрин), которые приводят организм в полную боевую готовность и обеспечивают тем самым его сохранность. Но чрезмерное количество этих гормонов (например, в ситуации хронического стресса), в частности кортизола, может стать причиной гибели клеток головного мозга и развития страшных заболеваний на почве ослабленного иммунитета. Разрушение мозговых клеток может повлечь за собою развитие психических заболеваний (шизофрении), а ослабленный иммунитет, как правило, сопровождается развитием тяжелых недугов, самыми распространенными среди которых считаются сердечно-сосудистые заболевания , рак и диабет.

5. Наркотики

Наркотики являют собою специфические химические вещества, разрушающие клетки головного мозга и нарушающие системы связей в нем. В результате действия наркотических веществ активируются рецепторы, вызывающие выработку аномальных сигналов, которые становятся причиной возникновения галлюциногенных проявлений. Происходит этот процесс благодаря сильному повышению уровня определенных гормонов, что двояко сказывается на организме. С одной стороны, большое количество, например, допамина способствует возникновению эффекта эйфории, но с другой – повреждает нейроны, ответственные за регуляцию настроения. Чем больше таких нейронов повреждено, тем сложнее достичь состояния «блаженства». Таким образом, организм требует все большую дозу наркотических веществ, развивая при этом зависимость.

Нервная ткань - основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки - нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон - это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний - .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков - нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации . Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в, эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 - микротрубочки; 2 - длинный отросток нервной клетки (аксон); 3 - эндоплазматический ретикулум; 4 - ядро; 5 - нейроплазма; 6 - дендриты; 7 - митохондрии; 8 - ядрышко; 9 - миелиновая оболочка; 10 - перехват Ранвье; 11 - окончание аксона

Нейроглия

Нейроглия , или глия , - совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру. Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими. Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг, и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току . Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом . В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей.

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков - аксона и дендритов.


Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных, рецепторов, наличием на ней.

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие - встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них - генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа - направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение - аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье - микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов. Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки - центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых. Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов - в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг . Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).


Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП - синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП - синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие - в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных - уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.


Рис. 5. Пространственная и временная суммация ВПСП нейроном; а - BПСП на одиночный стимул; и - ВПСП на множественную стимуляцию от разных афферентов; в - ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности . С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя - к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй - образует аксоном синапс на теле первого нейрона. Локальные могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.


Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.


Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

  • Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
  • Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
  • Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
  • Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  1. учитывают размеры и форму тела нейрона,
  2. количество и характер ветвления отростков,
  3. длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нейрон, или нервная клетка – это электрически возбуждаемая клетка, которая обрабатывает и передает информацию с помощью электрических и химических сигналов. Эти сигналы между нейронами осуществляются через специальные соединения, называемые синапсами. Нейроны могут соединяться друг с другом, образуя нейронные сети. Нейроны являются основными компонентами головного и спинного мозга центральной нервной системы (ЦНС) и вегетативных ганглиев периферической нервной системы. Существует несколько типов специализированных нейронов. Сенсорные нейроны реагируют на раздражители, такие как прикосновение, звук или свет и все другие раздражители, воздействующие на клетки сенсорных органов, которые затем посылают сигналы в спинной и головной мозг. Моторные нейроны получают сигналы от головного и спинного мозга, вызывая мышечные сокращения и влияя на гландулярные выходы. Интернейроны соединяют нейроны с другими нейронами в той же области мозга или спинной мозг в нейронных сетях.

Типичный нейрон состоит из тела клетки (сомы), дендритов и аксона. Термин «нейрит» используется для описания дендрита или аксона, особенно на его недифференцированной стадии. Дендриты представляют собой тонкие структуры, которые возникают из тела клетки, часто распространяются на сотни микрометров и разветвляются несколько раз, что приводит к возникновению сложного «дендритного дерева». Аксон (также называемый нервным волокном при миелинизации) является специальным клеточным расширением (процессом), который возникает из тела клетки в месте, называемом холмом аксона, и перемещается на расстояние до 1 метра у людей или даже больше у других видов животных. Нервные волокна часто соединяются в пучки, а в периферической нервной системе пучки этих пучков образуют нервы (как пряди из проволочных кабелей). Тело клетки нейрона часто вызывает рост множественных дендритов, но не более чем на один аксон, хотя аксон может разветвляться сотни раз. В большинстве синапсов, сигналы посылаются от аксона одного нейрона к дендриту другого. Однако, из этих правил существует множество исключений: например, нейроны могут не иметь дендритов или не иметь аксона, а синапсы могут связывать аксон с другим аксоном или дендрит с другим дендритом. Все нейроны являются электрически возбуждаемыми, поддерживая градиенты напряжения на своих мембранах с помощью ионных насосов с метаболическим действием, которые объединяются с ионными каналами, встроенными в мембрану, для генерирования внутриклеточных или внеклеточных концентраций ионов, таких как натрий, калий, хлорид и кальций. Изменения в поперечном мембранном напряжении могут изменять функцию зависимых от напряжения ионных каналов. Если напряжение изменяется достаточно сильно, генерируется электрохимический импульс «все или ничего», называемый потенциалом действия, который быстро перемещается вдоль аксона клетки и активирует синаптические связи с другими клетками. В большинстве случаев, нейроны генерируются специальными типами стволовых клеток. Нейроны во взрослом мозге обычно не подвергаются клеточному делению. Астроциты представляют собой звездообразные глиальные клетки, которые также, как было обнаружено, превращаются в нейроны в силу характерной плюрипотентности стволовых клеток. В зрелом возрасте, в большинстве областей мозга нейрогенез в большинстве случаев прекращается. Тем не менее, есть убедительные доказательства генерации значительного числа новых нейронов в двух областях мозга, гиппокампе и обонятельной луковице.

Обзор

Нейрон – это специализированный тип клеток, обнаруженный в телах всех живых организмов. Только губки и несколько других более простых организмов не имеют нейронов. Особенностями, которые определяют нейрон, являются электрическая возбудимость и наличие синапсов, которые являются сложными мембранными переходами, которые передают сигналы другим клеткам. Нейроны тела, а также глиальные клетки, которые придают им структурную и метаболическую поддержку, вместе составляют нервную систему. У позвоночных, большинство нейронов относятся к центральной нервной системе, но некоторые из них находятся в периферических ганглиях, и многие сенсорные нейроны расположены в сенсорных органах, таких как сетчатка и улитка. Типичный нейрон делится на три части: тело сомы или клетки, дендриты и аксон. Сома обычно компактна; аксон и дендриты – это нити, которые выходят из сомы. Дендриты обычно обильно ветвятся, становятся тоньше с каждым ветвлением и расширяют свои самые отдаленные ветви на несколько сотен микрометров от сомы. Аксон покидает сому в месте набухания, называемом холмом аксона, и может простираться на большие расстояния, что приводит к появлению сотен ветвей. В отличие от дендритов, аксон обычно имеет одинаковый диаметр по всей длине. Сома может «вырастить» многочисленные дендриты, но не более чем один аксон. Синаптические сигналы от других нейронов принимаются сомой и дендритами; сигналы к другим нейронам передаются аксоном. Таким образом, типичный синапс представляет собой контакт между аксоном одного нейрона и дендритом или сомой другого. Синаптические сигналы могут быть возбуждающими или тормозящими. Если чистое возбуждение, полученное нейроном за короткий промежуток времени, достаточно велико, нейрон генерирует короткий импульс, называемый потенциалом действия, который возникает у сомы и быстро распространяется вдоль аксона, активируя синапсы на другие нейроны по мере его поступления. Многие нейроны вписываются в вышеизложенную схему во всех отношениях, но есть и исключения для большинства ее частей. Нет нейронов, у которых нет сомы, но есть нейроны, у которых нет дендритов, и нейроны, у которых отсутствует аксон. Кроме того, в дополнение к типичным аксодендритным и аксосомным синапсам, существуют аксоаксические (аксон-аксонные) и дендродрендритные (дендрит-дендритные) синапсы. Ключом к нейронной функции является синаптическая сигнализация, которая частично является электрической, и частично – химической. Электрический аспект зависит от свойств мембраны нейрона. Как и все клетки животных, клеточное тело каждого нейрона окружено плазматической мембраной, двухслойной липидной молекулой со многими типами белковых структур, встроенных в нее. Липидный бислой является мощным электрическим изолятором, но в нейронах многие белковые структуры, встроенные в мембрану, являются электрически активными. К ним относятся ионные каналы, которые позволяют электрически заряженным ионам течь через мембрану, и ионные насосы, которые активно переносят ионы с одной стороны мембраны на другую. Большинство ионных каналов проницаемы только для конкретных типов ионов. Некоторые ионные каналы потенциалзависимы, что означает, что они могут переключаться между открытыми и закрытыми состояниями, изменяя разность потенциалов на мембране. Другие химически зависимы, что означает, что они могут переключаться между открытым и закрытым состояниями путем взаимодействия с химическими веществами, которые диффундируют через внеклеточную жидкость. Взаимодействия между ионными каналами и ионными насосами создают разность потенциалов на мембране, обычно немного меньше 1/10 вольт на базовой линии. Это напряжение имеет две функции: во-первых, оно обеспечивает источник питания для ассортимента зависимого от напряжения белкового оборудования, встроенного в мембрану; во-вторых, оно обеспечивает основу для передачи электрического сигнала между различными частями мембраны. Нейроны «общаются» при помощи химических и электрических синапсов в процессе, известном как нейротрансмиссия, также называемом синаптической трансмиссией. Основным процессом, который запускает высвобождение нейротрансмиттеров, является потенциал действия, распространяющийся электрический сигнал, который генерируется при использовании электрически возбудимой мембраны нейрона. Это также известно как волна деполяризации.

Анатомия и гистология

Нейроны являются высокоспециализированными относительно обработки и передачи клеточных сигналов. Учитывая разнообразие их функций, выполняемых в разных частях нервной системы, существует, как ожидается, широкое разнообразие нейронов по форме, размеру и электрохимическим свойствам. Например, сома нейрона может варьироваться от 4 до 100 микрометров в диаметре. Сома – тело нейрона. Поскольку она содержит ядро, здесь происходит большая часть синтеза белка. Ядро может иметь диаметр от 3 до 18 микрометров. Дендриты нейрона являются клеточными расширениями со многими ветвями. Эту общую форму и структуру метафорически называют дендритным деревом. Большая часть входа в нейрон происходит через дендритный позвоночник. Аксон – более тонкая, подобная кабелю проекция, которая может растягиваться на десятки, сотни или даже десятки тысяч раз диаметра сомы в длину. Аксон переносит нервные сигналы от сомы (а также возвращает некоторые типы информации). У многих нейронов есть только один аксон, но этот аксон может и, как правило, подвергнется, обширному ветвлению, позволяющему «общаться» со многими клетками-мишенями. Часть аксона, где он появляется из сомы, называется аксональным холмом. Помимо того, что аксональный холм является анатомической структурой, он также является частью нейрона, который имеет наибольшую плотность зависимых от напряжения натриевых каналов. Это делает его наиболее легковозбуждаемой частью нейрона и зоной инициации всплеска для аксона: в электрофизиологических терминах, он имеет наибольший порог потенциального отрицательного воздействия. В то время как аксон и аксональный холм обычно участвуют в оттоке информации, этот регион также может получать данные от других нейронов. Терминаль аксона содержит синапсы, специализированные структуры, в которых химические вещества нейротрансмиттеров высвобождаются для связи с целевыми нейронами. Каноническое представление нейрона связывает специальные функции с его различными анатомическими компонентами; однако, дендриты и аксоны часто действуют так, что это противоречит их так называемой основной функции. Аксоны и дендриты в центральной нервной системе обычно имеют толщину около одного микрометра, а некоторые в периферической нервной системе намного толще. Сома обычно составляет около 10-25 микрометров в диаметре и часто не намного больше, чем содержащееся в ней ядро клетки. Самый длинный аксон человеческого моторного нейрона может быть более метра длиной, от основания позвоночника до пальцев ног. Сенсорные нейроны могут иметь аксоны, которые начинаются от пальцев ног и продолжаются до задней колонки спинного мозга, более 1,5 метров у взрослых. Жирафы имеют одиночные аксоны длиной несколько метров по всей длине шеи. Большая часть того, что известно об аксональной функции, происходит от изучения гигантского аксона кальмара, идеального экспериментального препарата из-за его относительно огромного размера (толщиной 0,5-1 миллиметра, длиной несколько сантиметров). Полностью дифференцированные нейроны постоянно постмитотичны, однако исследования, начиная с 2002 года, показывают, что дополнительные нейроны во всем мозге могут развиваться из нервных стволовых клеток в процессе нейрогенеза. Они встречаются во всем мозге, но особенно сконцентрированы в субвентрикулярной зоне и субгранулярной зоне .

Гистология и внутренняя структура

Многочисленные микроскопические скопления, называемые веществом Ниссля (или тела Ниссля), видны, когда тела нервных клеток окрашиваются базофильным («любящим основание») красителем. Эти структуры состоят из грубого эндоплазматического ретикулума и связанной с ним рибосомальной РНК. Эти структуры были названы в честь немецкого психиатра и невропатолога Франца Ниссли (1860-1919). Они участвуют в синтезе белка, и их известность можно объяснить тем, что нервные клетки очень метаболически активны. Базофильные красители, такие как анилин или (слабо) гематоксилин выделяют отрицательно заряженные компоненты и поэтому связываются с фосфатным скелетом рибосомной РНК. Тело клетки нейрона поддерживается сложной сеткой структурных белков, называемых нейрофиламентами, которые собираются в более крупные нейрофибриллы. Некоторые нейроны также содержат пигментные гранулы, такие как нейромеланин (коричневато-черный пигмент, который является побочным продуктом синтеза катехоламинов) и липофусцин (желтовато-коричневый пигмент), оба из которых накапливаются с возрастом. Другими структурными белками, которые важны для нейрональной функции, являются актин и тубулин из микротрубочек. Актин преимущественно наблюдается на кончиках аксонов и дендриты – в ходе нейронального развития. Существуют разные внутренние структурные характеристики между аксонами и дендритами. Типичные аксоны почти никогда не содержат рибосом, кроме некоторых в начальном сегменте. Дендриты содержат гранулированный эндоплазматический ретикулум или рибосомы в уменьшающихся количествах, когда расстояние от тела клетки увеличивается.

Классификация

Нейроны существуют в разных формах и размерах и могут быть классифицированы по их морфологии и функции. Анатомист Камилло Гольджи сгруппировал нейроны на два типа; тип I с длинными аксонами, используемыми для перемещения сигналов на большие расстояния и тип II с короткими аксонами, которые часто можно путать с дендритами. Клетки типа I могут быть дополнительно разделены по тому, где находится тело клетки или сома. Основная морфология нейронов I типа, представленная спинальными двигательными нейронами, состоит из клеточного тела, называемого сомой, и длинного тонкого аксона, покрытого миелиновой оболочкой. Вокруг тела клетки находится ветвящееся дендритное дерево, которое получает сигналы от других нейронов. Конец аксона имеет ветвящиеся терминалы (терминали аксона), которые высвобождают нейротрансмиттеры в щель, называемую синаптической щелью между терминалями и дендритами следующего нейрона.

Структурная классификация

Полярность

Большинство нейронов могут быть анатомически охарактеризованы как:

    Униполярные или псевдоуниполярные: дендрит и аксон производятся в ходе одного и того же процесса.

    Биполярные: аксон и одиночный дендрит на противоположных концах сомы.

    Многополярный: два или более дендрита, отдельно от аксона:

    Гольджи I: нейроны с длительно выступающими аксональными процессами; примерами являются пирамидальные клетки, клетки Пуркинье и клетки переднего рога.

    Гольджи II: нейроны, аксоновский процесс которых реализуется локально; лучшим примером является гранулярная клетка.

    Анаксонический: аксон нельзя отличить от дендритов.

Другие

Кроме того, некоторые уникальные типы нейронов могут быть идентифицированы в соответствии с их расположением в нервной системе и различной формой. Вот некоторые примеры:

    Миоэпителиальная клетка, интернейроны, образующие плотное сплетение терминалей вокруг сомы клеток-мишеней, обнаружены в коре и мозжечке.

    Клетка Бетца, крупные моторные нейроны.

    Клетка Лугаро, интернейроны мозжечка.

    Средние колючие нейроны, большинство нейронов в полосатом теле.

    Клетки Пуркинье, огромные нейроны в мозжечке, тип многополярного нейрона Гольджи I.

    Пирамидальные клетки, нейроны с треугольной сомой, тип Гольджи I.

    Клетки Реншоу, нейроны с обоими концами, связанные с альфа-двигательными нейронами.

    Однополярные кисти, интернейроны с уникальным дендритом, заканчивающиеся кистообразным пучком.

    Гранулярная клетка, тип нейронов Гольджи II.

    Передние роговые клетки, мотонейроны, расположенные в спинном мозге.

    Шпиндельные клетки, интернейроны, которые соединяют широко разделенные области мозга.

Функциональная классификация

Направление

    Афферентные нейроны передают информацию из тканей и органов в центральную нервную систему и также называются сенсорными нейронами.

    Эфферентные нейроны передают сигналы от центральной нервной системы к эффекторным клеткам и также называются двигательными нейронами.

    Интернейроны соединяют нейроны в определенных областях центральной нервной системы.

Афферентные и эфферентные нейроны также относятся, в основном, к нейронам, которые, соответственно, приносят информацию или отправляют информацию из мозга.

Действие на другие нейроны

Нейрон воздействует на другие нейроны, высвобождая нейротрансмиттер, который связывается с химическими рецепторами. Влияние на постсинаптический нейрон определяется не пресинаптическим нейроном или нейротрансмиттером, а типом активируемого рецептора. Нейротрансмиттер можно рассматривать как ключ, а рецептор – как замок: один и тот же ключ можно использовать для открытия многих разных типов замков. Рецепторы могут быть классифицированы как возбуждающие (приводящие к увеличению скорости выстреливания), ингибирующие (приводящие к снижению скорости выстреливания) или модулирующие (вызывающие долговременные эффекты, не имеющие прямого отношения к скорости выстреливания). Два наиболее распространенных нейротрансмиттера в мозге, глутамат и ГАМК, имеют действия, которые в значительной степени непротиворечивы. Глутамат действует на несколько разных типов рецепторов и обладает эффектами, которые возбуждаются при ионотропных рецепторах и обладают модулирующим эффектом при метаботропных рецепторах. Аналогично, ГАМК действует на несколько разных типов рецепторов, но все они имеют эффекты (по крайней мере, у взрослых животных), которые являются ингибиторными. Из-за этой согласованности, нейробиологи часто используют упрощенную терминологию, говоря о клетках, которые высвобождают глутамат, как о «возбуждающих нейронах», и клетках, которые высвобождают ГАМК, как об «ингибирующих нейронах». Поскольку более 90% нейронов в головном мозге высвобождают либо глутамат, либо ГАМК, эти обозначения охватывают подавляющее большинство нейронов. Существуют также другие типы нейронов, которые оказывают последовательное воздействие на свои мишени, например, «возбуждающие» двигательные нейроны в спинном мозге, которые высвобождают ацетилхолин, и «тормозные» спинальные нейроны, которые высвобождают глицин. Однако, различие между возбуждающим и тормозящим нейротрансмиттерами не является абсолютным. Скорее, это зависит от класса химических рецепторов, присутствующих на постсинаптических нейронах. В принципе, один нейрон, высвобождающий один нейротрансмиттер, может оказывать возбуждающее воздействие на некоторые мишени, тормозящие эффекты на другие, а также модулирующие эффекты на третьи. Например, фоторецепторные клетки в сетчатке постоянно высвобождают нейротрансмиттер глутамат в отсутствие света. Так называемые OFF биполярные клетки, как и большинство нейронов, возбуждаются высвобожденным глутаматом. Однако, соседние целевые нейроны, называемые ON биполярными клетками, вместо этого ингибируются глутаматом, поскольку они не имеют типичных ионотропных глутаматных рецепторов и вместо этого экспрессируют класс ингибирующих метаботропных глутаматных рецепторов. В присутствии света, фоторецепторы прекращают высвобождать глутамат, который освобождает ON биполярные клетки от торможения, активируя их; это одновременно устраняет возбуждение из биполярных клеток OFF, заставляя их «замолчать». Можно определить тип ингибирующего эффекта, который пресинаптический нейрон будет оказывать на постсинаптический нейрон, на основе белков, которые экспрессирует пресинаптический нейрон. Экспрессирующие паравальбумин нейроны обычно гасят выходной сигнал постсинаптического нейрона в зрительной коре, тогда как нейроны, экспрессирующие соматостатин, обычно блокируют дендритные входы в постсинаптический нейрон .

Модели разряда

Нейроны обладают внутренними электросопротивляющими свойствами, такими как колебания осцилляций трансмембранного напряжения. Поэтому нейроны можно классифицировать по их электрофизиологическим характеристикам:

Классификация по производству нейротрансмиттеров

    Холинергические нейроны – ацетилхолин. Ацетилхолин высвобождается из пресинаптических нейронов в синаптическую щель. Он действует как лиганд как для лиганд-ионных каналов, так и для метаботропных (GPCR) мускариновых рецепторов. Никотиновые рецепторы представляют собой пентамерные лиганд-ионные каналы, состоящие из альфа- и бета-субъединиц, которые связывают никотин. Связывание лиганда открывает канал, вызывающий приток деполяризации Na+ и увеличивает вероятность высвобождения пресинаптического нейротрансмиттера. Ацетилхолин синтезируют из холина и ацетил-кофермента А.

    ГАМКергические нейроны – гамма-аминомасляная кислота. ГАМК является одним из двух нейроингибиторов в ЦНС, другим является глицин. ГАМК имеет гомологичную функцию для ацетилхолина, генерируя анионные каналы, которые позволяют хлор-ионам входить в постсинаптический нейрон. Хлор вызывает гиперполяризацию в нейроне, уменьшая вероятность срабатывания потенциала действия, когда напряжение становится более отрицательным (напомним, что для выстреливания потенциала действия необходимо достичь положительного порога напряжения). ГАМК синтезируется из глутамат-нейротрансмиттеров ферментами глутаматной декарбоксилазы.

    Глутаматергические нейроны – глутамат. Глутамат является одним из двух первичных возбуждающих аминокислотных нейротрансмиттеров, а другим является аспартат. Глутаматные рецепторы являются одной из четырех категорий, три из которых являются лиганд-связанными ионными каналами, и один из которых представляет собой рецептор, связанный с G-белком (часто называемый GPCR). Рецепторы альфа-амино-3-гидрокси-5-метил-4-изоксазол-пропионовой кислоты (AMPA) и рецепторы каината функционируют как катионные каналы, проницаемые для каналов Na+ -катиона, опосредующие быструю возбуждающую синаптическую трансмиссию.

    NMDA-рецепторы являются другим катионным каналом, более проницаемым для Са2 +. Функция NMDA-рецепторов зависит от связывания рецептора глицина как соагониста в порах канала. NMDA-рецепторы не функционируют без присутствия обоих лигандов.

    Метаботропные рецепторы, GPCR, модулируют синаптическую передачу и постсинаптическую возбудимость.

    Глютамат может вызвать экситотоксичность, когда поток крови в мозг прерывается, что приводит к повреждению головного мозга. Когда подавляется кровоток, глутамат высвобождается из пресинаптических нейронов, вызывая активацию рецепторов NMDA и AMPA больше, чем обычно, вне условий стресса, приводя к повышению уровней Ca2 + и Na +, входящих в постсинаптический нейрон и вызывающих повреждение клеток. Глутамат синтезируется из аминокислотного глутамина ферментом глутамат-синтазой.

    Допаминергические нейроны – допамин. Допамин представляет собой нейротрансмиттер, который действует на рецепторы типа D1 (D1 и D5), которые увеличивают рецепторы уровень cAMP и PKA и D2 (D2, D3 и D4), которые активируют Gi-связанные рецепторы, которые уменьшают cAMP и PKA. Допамин связан с настроением и поведением и модулирует как до, так и постсинаптическую нейротрансмиссию. Потеря дофаминовых нейронов в чёрном веществе связана с болезнью Паркинсона. Допамин синтезируется из аминокислоты тирозина. Тирозин катализируется в левадопу (или L-DOPA) тирозингидролазой, а левадопа затем превращается в допамин с помощью аминокислоты декарбоксилазы.

    Серотонинергические нейроны – серотонин. Серотонин (5-гидрокситриптамин, 5-НТ) может действовать как возбуждающее или ингибирующее вещество. Из четырех рецепторных классов 5-HT, 3 являются GPCR и 1 является лиганд-катионным каналом. Серотонин синтезируется из триптофана при помощи триптофангидроксилазы, а затем дополнительно декарбоксилазы ароматических кислот. Отсутствие 5-НТ у постсинаптических нейронов было связано с депрессией. Препараты, такие как Prozac и Zoloft, блокирующие пресинаптический серотониновый транспортер, используются для лечения некоторых заболеваний.

Связь

Нейроны «общаются» друг с другом через синапсы, при этом терминали аксона или en passant bouton (тип терминалей, расположенных вдоль длины аксона) одной ячейки связывают другой дендрит нейронов, сому или, реже, аксон. Нейроны, такие как клетки Пуркинье в мозжечке, могут иметь более 1000 дендритных ветвей, связывающих их с десятками тысяч других клеток; другие нейроны, такие как магноцеллюлярные нейроны супраоптического ядра, имеют только один или два дендрита, каждый из которых получает тысячи синапсов. Синапсы могут быть возбуждающими либо тормозящими, и могут либо увеличивать, либо уменьшать активность в целевом нейроне, соответственно. Некоторые нейроны также взаимодействуют через электрические синапсы, которые являются прямыми электрически проводящими переходами между клетками. В химическом синапсе, процесс синаптической передачи заключается в следующем: когда потенциал действия достигает терминали аксонов, он открывает потенциалзависимые кальциевые каналы, позволяя ионам кальция входить в терминаль. Кальций заставляет синаптические везикулы, заполненные молекулами нейротрансмиттера, сливаться с мембраной, высвобождая их содержимое в синаптическую щель. Нейротрансмиттеры диффундируют через синаптическую щель и активируют рецепторы на постсинаптическом нейроне. Высокий уровень цитозольного кальция в терминале аксона также вызывает поглощение митохондриального кальция, что, в свою очередь, активирует митохондриальный энергетический метаболизм для получения АТФ для поддержки непрерывной нейротрансмиссии . Человеческий мозг имеет огромное количество синапсов. Каждый из ста миллиардов нейронов имеют, в среднем, 7000 синаптических связей с другими нейронами. Было подсчитано, что мозг трехлетнего ребенка имеет около 1 квадриллиона синапсов. Это число уменьшается с возрастом, стабилизируясь по взрослой жизни. Оценки для взрослых отличаются, начиная от 100 до 500 трлн. .

Механизмы распространения потенциалов действия

В 1937 году Джон Захари Янг предположил, что гигантский аксон кальмара может быть использован для изучения электрических свойств нейронов. Будучи более крупными, но схожими по своей природе с человеческими нейронами, клетки кальмаров было легче изучать. Путем вставки электродов в аксоны гигантских кальмаров, были сделаны точные измерения мембранного потенциала. Клеточная мембрана аксона и сома содержит потенциалзависимые ионные каналы, которые позволяют нейрону генерировать и распространять электрический сигнал (потенциал действия). Эти сигналы генерируются и распространяются заряжающими ионами, включая натрий (Na +), калий (K +), хлорид (Cl-) и кальций (Ca2 +). Существует несколько стимулов, которые могут активировать нейрон, приводя к электрической активности, включая давление, растяжение, химические передатчики и изменения электрического потенциала на клеточной мембране. Стимулы вызывают выделение конкретных ионных каналов внутри клеточной мембраны, приводя к потоку ионов через клеточную мембрану, изменяя мембранный потенциал. Тонкие нейроны и аксоны требуют меньше метаболических затрат для создания и переноса потенциалов действия, но более толстые аксоны быстрее передают импульсы. Чтобы свести к минимуму расходы на метаболизм, сохраняя при этом высокую проводимость, многие нейроны имеют изоляционные оболочки миелина вокруг своих аксонов. Оболочки образованы глиальными клетками: олигодендроцитами в центральной нервной системе и клетками Шванна в периферической нервной системе. Оболочка позволяет потенциалам действиям двигаться быстрее, чем в немиелинизированных аксонах того же диаметра, при этом используя меньше энергии. Миелиновая оболочка в периферических нервах обычно протекает вдоль аксона в срезах длиной около 1 мм, перемежающихся неочищенными узлами Ранвье, которые содержат высокую плотность потенциалзависимых ионных каналов. Рассеянный склероз – это неврологическое расстройство, которое возникает в результате демиелинизации аксонов в центральной нервной системе. Некоторые нейроны не генерируют потенциалы действия, а вместо этого генерируют градуированный электрический сигнал, который, в свою очередь, вызывает градуированное высвобождение нейротрансмиттера. Такие нейроны, как правило, являются сенсорными нейронами или интернейронами, потому что они не могут переносить сигналы на большие расстояния.

Нейронное кодирование

Нейронное кодирование связано с тем, как сенсорная и другая информация представлена в мозге нейронами. Основная цель изучения нейронного кодирования состоит в том, чтобы охарактеризовать взаимосвязь между стимулом и индивидуальными или ансамблевыми нейронными ответами, а также отношения между электрическими действиями нейронов в этом ансамбле. Считается, что нейроны могут кодировать как цифровую, так и аналоговую информацию.

Принцип «все или ничего»

Проведение нервных импульсов является примером реакции «все или ничего». Другими словами, если нейрон реагирует, он должен ответить полностью. Большая интенсивность стимуляции не дает более сильного сигнала, но может привести к более высокой частоте выстреливания. Существуют различные типы рецепторной реакции на стимул, медленно адаптируемые или тонические рецепторы реагируют на устойчивый стимул и дают устойчивую скорость выстреливания. Эти тонические рецепторы чаще всего реагируют на повышенную интенсивность стимула, увеличивая частоту выстреливания, обычно в качестве силовой функции стимула, нанесенного на импульсы в секунду. Это можно сравнить с внутренним свойством света, где для получения большей интенсивности конкретной частоты (цвета) должно быть больше фотонов, поскольку фотоны не могут стать «сильнее» для определенной частоты. Существует ряд других типов рецепторов, которые называются быстро адаптирующимися, или фазическими, рецепторами, у которых выстреливание уменьшается или останавливается при устойчивом стимуле; примеры включают в себя: кожа при касании объекта заставляет нейроны выстреливать, но, если объект поддерживает постоянное давление на кожу, нейроны прекращают выстреливать. Нейроны кожи и мышц, реагирующие на давление и вибрацию, имеют фильтрующие вспомогательные структуры, которые помогают им функционировать. Пациниальная оболочка – одна из таких структур. Он имеет концентрические слои, как у лука, которые образуются вокруг терминала аксона. В присутствии давления и при деформировании корпуса, механический стимул переносится на аксон, который выстреливает. Если давление устойчивое, стимул отсутствует; таким образом, как правило, эти нейроны реагируют на временную деполяризацию во время начальной деформации и снова, когда давление удаляется, что заставляет корпус снова менять форму. Другие типы адаптации важны для расширения функции ряда других нейронов .

История

Место нейрона в качестве основного функционального блока нервной системы было впервые признано в конце 19 века благодаря работе испанского анатома Сантьяго-Рамон-и-Кахаля . Чтобы сделать структуру отдельных нейронов видимой, Рамон-и-Кахаль улучшил процесс окрашивания серебром, который был разработан Камилло Гольджи. Улучшенный процесс включает в себя метод под названием «двойная пропитка», который используется до сих пор. В 1888 году Рамон-и-Кахаль опубликовал статью о птичьем мозжечке. В этой статье ученый говорит, что не смог найти доказательства анастомоза между аксонами и дендритами и называет каждый нервный элемент «абсолютно автономным кантоном». Это стало известно как доктрина нейрона, один из центральных принципов современной нейронауки. В 1891 году, немецкий анатом Генрих Вильгельм Вальдейер написал очень влиятельный обзор о доктрине нейронов, в котором он ввел термин «нейрон» для описания анатомической и физиологической единицы нервной системы. Метод серебрения – чрезвычайно полезный метод нейроанатомических исследований, потому что, по неизвестным причинам, он окрашивает очень небольшой процент клеток в ткани, поэтому можно видеть полную микроструктуру отдельных нейронов без большого перекрытия с другими клетками в плотно упакованном мозге.

Нейронная доктрина

Нейронная доктрина – это фундаментальная идея о том, что нейроны являются основными структурными и функциональными единицами нервной системы. Теория была выдвинута Сантьяго-Рамоном-и-Кахалем в конце 19 века. Он считал, что нейроны являются дискретными клетками (не связанными в сеть), действующими как метаболически различные единицы. Более поздние открытия дали несколько уточнений простейшей форме доктрины. Например, глиальные клетки, которые не считаются нейронами, играют важную роль в обработке информации. Кроме того, электрические синапсы более распространены, чем считалось ранее , что означает наличие прямых цитоплазматических связей между нейронами. На самом деле, есть примеры нейронов, образующих еще более сильную связь: гигантский аксон кальмара возникает из слияния нескольких аксонов. Рамон-и-Кахаль также постулировал Закон динамической поляризации, в котором говорится, что нейрон принимает сигналы у своих дендритов и тела клетки и передает их, как потенциалы действия, вдоль аксона в одном направлении: от тела клетки . В Законе динамической поляризации есть важные исключения; дендриты могут служить синаптическими выходными участками нейронов, а аксоны могут принимать синаптические входы.

Нейроны в мозге

Количество нейронов в мозге резко варьируется у разных видов животных . Взрослый человеческий мозг содержит около 85-86 миллиардов нейронов, 16,3 миллиарда из которых находятся в коре головного мозга и 69 миллиардов – в мозжечке. В отличие от этого, нематод-червь Caenorhabditis elegans имеет всего 302 нейрона, что делает его идеальным экспериментальным предметом, поскольку ученые смогли отобразить все нейроны этого организма. Плодовая мушка Drosophila melanogaster, распространенный объект биологических экспериментов, имеет около 100000 нейронов и демонстрирует достаточно сложное поведение. Многие свойства нейронов, начиная от типа нейротрансмиттеров, используемых для формирования ионного канала, поддерживаются у разных видов, что позволяет ученым изучать процессы, происходящие в более сложных организмах, на гораздо более простых экспериментальных системах.

Неврологические расстройства

Амиотрофия Шарко-Мари-Тута – это гетерогенное наследственное расстройство нервов (нейропатия), которое характеризуется потерей мышечной ткани и ощущения прикосновения, преимущественно в ногах, а также в руках на поздних стадиях болезни. В настоящее время это заболевание является неизлечимым и одним из наиболее распространенных наследственных неврологических расстройств, которым страдает 37 из 100000 человек. Болезнь Альцгеймера (БА) является нейродегенеративным заболеванием, характеризующимся прогрессирующим ухудшением познавательной способности, а также снижением активности в повседневной жизни и нейропсихиатрическими симптомами или поведенческими изменениями. Наиболее ярким ранним симптомом БА является потеря кратковременной памяти (амнезия), которая обычно проявляется как незначительная забывчивость, которая становится все более выраженной с прогрессированием болезни с относительным сохранением более старых воспоминаний. По мере развития расстройства, когнитивные (интеллектуальные) нарушения распространяются на области языка (афазия), движения (апраксия) и узнавание (агнозия), а также на такие функции, как принятие решений и планирование. Болезнь Паркинсона (БП) является дегенеративным расстройством центральной нервной системы, которое часто ухудшает двигательные навыки и речь пациента. Болезнь Паркинсона относится к группе состояний, называемых двигательными расстройствами. Она характеризуется ригидностью мышц, тремором, замедлением физических движений (брадикинезия), а в крайних случаях – потерей физических движений (акинезия). Основные симптомы являются результатом снижения стимуляции моторной коры базальными ганглиями, что обычно вызвано недостаточным образованием и действием допамина, который вырабатывается в допаминергических нейронах головного мозга. Вторичные симптомы могут включать когнитивную дисфункцию высокого уровня и неявные языковые проблемы. БП является как хроническим, так и прогрессирующим заболеванием. Миастения – это нервно-мышечное заболевание, приводящее к колебательной мышечной слабости и утомляемости во время выполнения простых действий. Слабость обычно вызвана циркулирующими антителами, которые блокируют ацетилхолиновые рецепторы на постсинаптической нервно-мышечной линии, ингибируя стимулирующий эффект нейротрансмиттера ацетилхолина. Миастению лечат при помощи иммунодепрессантов, ингибиторов холинэстеразы и, в отдельных случаях, тимэктомии.

Демиелинизация

Демиелинизация – это потеря миелиновой оболочки, изолирующей нервы. Когда миелин распадается, проводимость сигналов вдоль нерва может быть нарушена или потеряна, а нерв, в конечном итоге, перестает работать. Это приводит к определенным нейродегенеративным расстройствам, таким как рассеянный склероз и хроническая воспалительная демиелинизирующая полинейропатия.

Аксональная дегенерация

Хотя большинство ответных реакций на повреждение включают в себя сигнализацию притока кальция для содействия повторному уплотнению отделенных частей, аксональные травмы первоначально приводят к острой дегенерации аксонов, представляющуют собой быстрое разделение проксимального и дистального концов в течение 30 минут после травмы. После этого наступает дегенерация с набуханием аксолемы, и, в конечном итоге, это приводит к образованию бусиноподобных структур. Гранулярный распад аксонального цитоскелета и внутренних органелл происходит после декомпозиции аксолемы. Ранние изменения включают накопление митохондрий в паранопальных областях в месте повреждения. Эндоплазматический ретикулум разрушается, а митохондрии разбухают, и, в конечном итоге, распадаются. Дезинтеграция зависит от убиквитиновой и кальпаиновой протеаз (вызванных притоком ионов кальция), предполагая, что аксональная дегенерация является активным процессом. Таким образом, аксон подвергается полной фрагментации. Этот процесс занимает около 24 часов в периферической нервной системе и длится дольше в ЦНС. В настоящее время неизвестно, какие сигнальные пути ведут к дегенерации аксолемы.

Нейрогенез

Было продемонстрировано, что нейрогенез может иногда возникать в мозге позвоночных взрослых, что привело к спорам в 1999 году . Более поздние исследования возраста нейронов человека свидетельствуют о том, что этот процесс происходит только у меньшинства клеток, и подавляющее большинство нейронов, содержащих неокортекс, были сформированы до рождения и сохраняются без замены. Тело содержит различные типы стволовых клеток, которые способны дифференцироваться в нейроны. В докладе, опубликованном в журнале Nature, было показано, что исследователи нашли способ трансформировать клетки кожи человека в рабочие нервные клетки, используя процесс, называемый трансдифференцировкой, в котором «клетки вынуждены принимать новые идентичности».

Регенерация нервов

Al, Martini, Frederic Et. Anatomy and Physiology" 2007 Ed.2007 Edition. Rex Bookstore, Inc. p. 288. ISBN 978-971-23-4807-5.

Sabbatini R.M.E. April–July 2003. Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine, 17. Retrieved March 19, 2007