Главная · Болезни желудка · Лекция по терморегуляции. Механизмы терморегуляции человека Механизмы терморегуляции гигиена

Лекция по терморегуляции. Механизмы терморегуляции человека Механизмы терморегуляции гигиена

Механизмы теплоотдачи организма в условиях холода и тепла ">

Механизмы теплоотдачи организма в условиях холода и тепла: а) перераспределение крови между сосудами внутренних органов и сосудами поверхности кожи; б) перераспределение крови в сосудах кожи.

Физическая терморегуляция появилась на более поздних этапах эволюции. Ее механизмы не затрагивают процессов клеточного обмена. Механизмы физической терморегуляции включаются рефлекторно и имеют как любой рефлекторный механизм три основных компонента. Во-первых, это рецепторы, воспринимающие изменение температуры внутри организма или окружающей среды. Второе звено - это центр терморегуляции. Третье звено - эффекторы, которые изменяют процессы теплоотдачи, сохраняя температуру тела на постоянном уровне. В организме, кроме потовой железы, нет собственных эффекторов рефлекторного механизма физической терморегуляции.

Значение физической терморегуляции

Физическая терморегуляция - это регуляция теплоотдачи. Ее механизмы обеспечивают поддержание температуры тела на постоянном уровне как в условиях, когда организму грозит перегрев, так и при охлаждении.

Физическая терморегуляция осуществляется путем изменений отдачи тепла организмом. Особо важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды.

Теплоотдача осуществляется путем теплоизлучения (радиационная теплоотдача), конвекции, т. е. движения и перемешивания нагреваемого телом воздуха, теплопроведения, т.е. отдачи тепла веществом, соприкасающимся с поверхностью тела. Характер отдачи тепла телом изменяется в зависимости от интенсивности обмена веществ.

Потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух плохой проводник тепла. В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира.

Регуляция температуры

Температура кожи, а следовательно интенсивность теплоизлучения и теплопроведения могут изменяться в холодных или жарких условиях внешней среды в результате перераспределения крови в сосудах и при изменении объема циркулирующей крови.

На холоде кровеносные сосуды кожи, главным образом артериолы, сужаются; большее количество крови поступает в сосуды брюшной полости и тем самым ограничивается теплоотдача. Поверхностные слои кожи, получая меньше теплой крови, излучают меньше тепла, поэтому теплоотдача уменьшается. Кроме того, при сильном охлаждении кожи происходит открытие артериовенозных анастомозов, что уменьшает количество крови, поступающей в капилляры, и тем самым препятствует теплоотдаче.

Перераспределение крови, происходящее на холоде, - уменьшение количества крови, циркулирующей через поверхностные сосуды, и увеличение количества крови, проходящей через сосуды внутренних органов, - способствует сохранению тепла во внутренних органах, температура которых поддерживается на постоянном уровне.

При повышении температуры окружающей среды сосуды кожи расширяются, количество циркулирующей в них крови увеличивается. Возрастает также объем циркулирующей крови во всем организме вследствие перехода воды из тканей в сосуды, а также потому, что селезенка и другие кровяные депо выбрасывают в общий кровоток дополнительное количество крови. Увеличение количества крови, циркулирующей через сосуды поверхности тела, способствует теплоотдаче посредством радиации и конвекции. Для сохранения постоянства температуры тела при высоких температурах окружающей среды имеет значение и потоотделение, происходящее за счет теплоотдачи в процессе испарения воды.

Если температура тела превышает температуру среды, то тело будет отдавать тепло в среду. Отдача тепла в окружающую среду осуществляется излучением, теплопроведением, конвекцией и испарением.

Повышение температуры среды выше температуры тела приводит к приросту температуры тела за счёт излучения и проведения. В этих условиях освобождение от излишков тепла и охлаждение осуществляются только потоиспарением. Движение воздуха около кожи усиливает скорость испарения и тем самым увеличивает эффективность потери тепла (охлаждающий эффект вентилятора).

Физическая терморегуляция (теплоотдача.) Если температура тела превышает температуру среды, то тело будет отдавать тепло в среду. Отдача тепла в окружающую среду осуществляется излучением, теплопроведением, конвекцией и испарением.

    Излучение . Обнажённый человек в условиях комнатной температуры теряет около 60% от отдаваемого тепла посредством излучения инфракрасных волн длиной от 760 нм.

    Конвекция (15% отдаваемого тепла) - потеря тепла путём переноса движущимися частицами воздуха или воды. Количество тепла, теряемого конвекционным способом, возрастает с увеличением скорости движения воздуха (вентилятор, ветер). В воде величина отдачи тепла путём проведения и конвекции во много раз больше, чем на воздухе.

    Проведение - контактная передача тепла (3% отдаваемого тепла) при соприкосновении поверхности тела с какими-либо физическими телами (стул, пол, подушка, одежда и др.).

Излучение, конвекция и проведение происходят, когда температура тела выше температуры окружающей среды. Если температура поверхности тела равна или ниже температуры окружающей среды, то эти способы потери тепла организмом становятся неэффективными. Например, в обычных условиях теплопроведение играет небольшую роль, т.к. воздух и одежда плохо проводят тепло.

    Испарение - необходимый механизм выделения тепла при высоких температурах. Испарение воды с поверхности тела приводит к потере 2,43 кДж (0,58 ккал) тепла на каждый грамм испарившейся воды.

Неощутимое испарение - результат непрерывной диффузии молекул воды через кожу и дыхательные поверхности, оно не контролируется системой температурной регуляции Даже без видимого потоотделения вода испаряется с поверхности кожи и лёгких в пределах от 700 – 850 мл воды в день (300 – 350 мл – с поверхности легких, 400 – 500 мл – с поверхности кожи) , вызывая потерю тепла порядка 12–16 ккал/час .

Интенсивность процесса зависит от относительной влажности среды : в насыщенном водяными парами воздухе испарение не происходит. Поэтому в бане пот выделяется в большом количестве, но не испаряется и стекает с поверхности кожи – неэффективное потоотделение .

При тяжелой физической работе в условиях высокой температуры среды пребывания потоотделение может достигать 10–12 л/сут. После тяжелой мышечной нагрузки путем испарения отдается 75% тепла, радиации – 12%, конвекции 13% (для сравнения: в покое при 20 0 С доля радиации составляет 66%, испарения - 19%, конвекции - 15%).

Вместе с потом теряется большое количество солей (в первую очередь - хлористого натрия) и витамина С. В связи с этим, нормы потребления данных веществ должны быть значительно расширены в рационе людей, работающих в горячих цехах и в условиях жаркого климата.

В теплоотдаче принимают участие кожа, слизистые, легкие, сердечно-сосудистая и выделительная системы .

Особо важную роль в процессах теплоотдачи играет состояние кожных сосудов, а также частота сердечных сокращений и дыхания.

Сердечно-сосудистая система влияет на интенсивность теплоотдачи за счет перераспределения крови в сосудах и изменения объема циркулирующей крови.

На холоде кровеносные сосуды кожи, в основном артериолы, суживаются; открываются артериовенозные анастомозы. Это уменьшает количество крови в капиллярах. В результате повышается термоизоляция организма и тепло сохраняется за счет ограничения теплоотдачи. За счет перераспределения крови увеличивается объемная скорость кровотока во внутренних органах – это способствует сохранению тепла в них – реакция теплоконсервации .

При повышении температуры окружающей среды:

1) сосуды кожи расширяются, количество циркулирующей в них крови увеличивается;

2) возрастает объем циркулирующей крови за счет перехода воды из тканей в сосуды и выброса крови из селезенки и других кровяных депо. В результате увеличивается теплоотдача путем радиации и конвекции.

Дыхательная система – аналогичный результат возникает и при учащении дыхания из-за выведения из организма большего количества нагретого воздуха. Особенно важное значение имеет у непотеющих животных (либо лишенных потовых желез, либо имеющих густую шерсть, затрудняющую потоотделение) – собаки, кошки и др. При повышении температуры среды у них развивается тепловая одышка – сильно учащенное, но крайне поверхностное дыхание. Увеличивает испарение воды со слизистой полости рта и верхних дыхательных путей.

Теплоотдаче препятствуют :

1) слой подкожной жировой клетчатки – в связи с малой теплопроводностью жира;

2) одежда – за счет того, что между ней и кожей находится слой неподвижного воздуха, являющегося плохим проводником тепла (его температура достигает 30 0 С). Теплоизолирующие свойства одежды тем лучше, чем более мелкоячеиста ее структура – шерстяная и меховая. Непроницаемая для воздуха одежда (резиновая) переносится плохо – слой воздуха между ней и телом быстро насыщается водяными парами и испарение прекращается.

3) изменение положения тела : когда холодно, животные «сворачиваются в клубок», что уменьшает поверхность теплоотдачи; когда жарко, наоборот, принимают положение, при котором она возрастает;

4) реакция кожных мышц - для человека имеет рудиментарное значение («гусиная кожа»), у животных изменяет ячеистость шерстяного покрова, в результате чего теплоизолирующая роль шерсти улучшается.

Постоянство температуры тела обеспечивается совместным действием механизмов, регулирующих с одной стороны, интенсивность обмена веществ и зависящее от него теплообразование(химическая терморегуляция), а с другой – теплоотдачу(физическая терморегуляция).

Таким образом, полезным приспособительным результатом деятельности рассматриваемой функциональной системы является постоянство не температуры кожи (температурной «оболочки»), а температуры внутренних органов (температурного «ядра»)

ФУНКЦИОНАЛЬНАЯ СИСТЕМА, ОБЕСПЕЧИВАЮЩАЯ ПОСТОЯНСТВО ТЕМПЕРАТУРЫ ТЕЛА

1 звено - полезный приспособительный результат – поддержание температуры тела на постоянном уровне.

2 звено - рецепторы . Терморецепцию осуществляют свободные окончания тонких сенсорных волокон типа А (дельта) и С.

(Регуляция постоянства температуры – это сложнорефлекторный акт, осуществляющийся в результате раздражения рецепторов кожи, кожных и подкожных сосудов, а также ЦНС.)

3 звено функциональной системы – нервный центр

4 звено функциональной системы исполнительные органы. Температура тела определяется определяется соотношением интенсивности:

1) образования тепла

2) отдачи тепла

МЕХАНИЗМЫ терморегуляции

Нервные механизмы терморегуляции в своей основе имеют рефлекторные дуги, в состав которых входят рецепторные образования (тепловые и холодовые рецепторы). По афферентным нервным волокнам импульсация от рецепторного аппарата достигает ряда основных центров вегетативной регуляции, прежде всего структур гипоталамуса. Эфферентной частью рефлекторной дуги являются симпатические и парасимпатические нервные волокна, иннервирующие внутренние органы, а также сосуды. Эфферентная импульсация осуществляется и по двигательным соматическим волокнам, регулирующим деятельность скелетной мускулатуры.

Локализация и свойства терморецепторов.

Периферические терморецепторы находятся в коже, подкожных тканях, кожных и подкожных сосудах. Кожные терморецепторы представляют собой неинкапсулированные нервные окончания.

Центральные терморецепторы расположены в медиальной преоптической области гипоталамуса (центральные нейроны-термосенсоры), ретикулярной формации среднего мозга, спинном мозге.)

Тепловые и холодовые рецепторы в ЦНС реагируют на изменение температуры крови, притекающей к нервным центрам. Замечено повышение теплообразования при охлаждении сонной артерии, приносящей кровь к головному мозгу.

Доказательства наличия центральных терморецепторов :

1 ) погружение денервированных задних конечностей собаки в холодную воду вызывает дрожь мышц головы, передних конечностей, туловища и увеличение теплообразования. Это связано с тем, что «холодная» кровь раздражает центральные терморецепторы;

2)при охлаждении сонной артерии, приносящей кровь к головному мозгу , развиваются дрожь и сужение сосудов кожи, что приводит к повышению теплообразования и ограничению теплоотдачи соответственно.

Найдены терморецепторы в дыхательных путях, в продолговатом мозге и в двигательной коре.

Таким образом, организм человека имеет двойную систему контроля температуры тела: воздействие внешней среды (тепловое или холодовое) обнаруживается кожными рецепторными образованиями , температура внутренней среды регистрируется терморецепторами внутренних органов и структур ЦНС.

Функциональная мобильность терморецепторов. Свойство терморецепторов кожи изменять свою чувствительность к температурным воздействиям в зависимости от изменения общего состояния организма отражает универсальное свойство рецепторов, открытое П.Г. Снякиным и получившее название «функциональная мобильность рецепторов».

Кроме того терморецепторы подразделяют на тепловые и холодовые .

X олодовые рецепторы располагаются в толще кожи, на глубине около 0,17 мм , тепловые рецепторы - на глубине 0,3 мм . Общее число точек поверхности кожи, воспринимающих холод, значительно превышает число точек, воспринимающих тепло. Холодовые и тепловые рецепторы располагаются неравномерно по кожной поверхности. Имеются индивидуальные зоны преимущественной локализации тепловых и холодовых терморецепторов.

Среди периферических терморецепторов преобладают холодовые , среди центральных – тепловые . При оптимальной для человека температуре окружающей среды терморецепторы генерируют разряды со стационарной частотой. С понижением окружающей температуры частота импульсации и холодовых рецепторов возрастает, тепловых - снижается. Наоборот, при повышении окружающей температуры возрастает частота импульсации тепловых рецепторов и снижается - холодовых.

Частота импульсов холодовых рецепторов кожи максимальна при температуре равной 20-30 0 С, а для тепловых рецепторов температура равна 38-43 0 С . Ощущение горячего – жжение – возникает при температуре выше 45 0 С и воспринимается другими рецепторами – горячевыми или рецепторами жжения(о тносятся к полимодальным ноцицепторам и являются промежуточным звеном между терморецепторами и ноцицепторами).

Роль нервных центров .

Поддержание температуры тела на оптимальном для метаболизма уровне осуществляется за счет регулирующего влияния ЦНС. Впервые наличие в головном мозге центра, способного изменять температуру тела, было обнаружено в 80-х годах XIX в. К. Бернаром . Его опыт, получивший название «теплового укола», состоял в следующем: в область промежуточного мозга через трепанационное отверстие вводили электрод, вызывающий раздражение данной области. Спустя 2-3 ч после введения электрода наступало стойкое повышение температуры тела животного. В дальнейших исследованиях было установлено, что важнейшая роль в процессах терморегуляции принадлежит гипоталамусу.

Согласно современным представлениям, терморегуляция осуществляется распределенной системой , основной частью которой является гипоталамический терморегуляционный механизм

Экспериментально было установлено, что основные (главные) центры терморегуляции находятся в гипоталамусе (за счет них воспринимаются изменения в окружающей и внутренней среде). При разрушении гипоталамуса – утрачивается способность регулировать температуру тела и животное становится пойкилотермным. . К нейронам гипоталамической области адресуется и импульсация, возникающая в терморецепторах внутренних органов и поверхности кожи. Сенсорная информация от терморецепторов распространяется по нервным волокнам типа А-дельта и через лемнисковые пути к нейронам таламуса, а затем в гипоталамус и сенсомоторную область коры большого мозга.

Известно, что регуляция процесса теплообразования (химическая терморегуляция) осуществляется деятельностью ядер задней части гипоталамуса ; процессы физической терморегуляции (теплоотдачи) обусловлены ядрами переднего гипоталамуса. Таким образом, в гипоталамусе имеется два регулирующих центра: центр теплообразования и центртеплоотдачи .

Центры теплоотдачи (передние ядра гипоталамуса) - разрушение этих структур приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях высокой температуры окружающей среды. Температура их тела при этом начинает возрастать, животные переходят в состояние гипертермии, причем гипертермия может развиться даже при комнатной температуре. Раздражение этих структур через вживленные электроды электрическим током вызывает у животных характерный синдром: одышку, расширение поверхностных сосудов кожи, падение температуры тела. Вызванная предварительным охлаждением мышечная дрожь у них прекра­щается.

Центры теплообразования (латерально-дорсальный гипоталамус) - их разрушение приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях пониженной температуры окружающей среды. Температура их тела в этих условиях начинает падать, и животные переходят в состояние гипотермии. Электрическое раздражение соответствующих центров гипоталамуса вызывает у животных следующий синдром: 1) сужение поверхностных сосудов кожи;

У теплокровных животных и человека (т.н. гомойотермных организмов), в отличие от холоднокровных (или пойкилотермных), постоянная температура тела является обязательным условием существования, одним из кардинальных параметров гомеостаза (или постоянства) внутренней среды организма.

Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его “ядра”), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика организма человека состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.

Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах - так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 - 400 % . Характерно, что по доле участия в терморегуляторном теплообразовании мышцы неравноценны.

При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.

Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.

Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм человека, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его “нормальной” (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.

Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня.обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.

Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции, на протяжении которой температура также остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.

Еще в 1902 г. Рубнер предложил различать два типа этих механизмов - терморегуляцию "химическую" и "физическую". Первая связана с изменением теплопродукции в тканях (напряжением химических реакций обмена), вторая - характеризуется теплоотдачей и перераспределением тепла. Наряду с кровообращением важная роль в физической терморегуляции принадлежит потоотделению, поэтому особая функция теплоотдачи принадлежит коже - здесь происходит остывание нагретой в мышцах или в "ядре" крови, здесь реализуются механизмы потообразования и потоотделения.

ь В "норме" теплопроведением можно пренебречь, т.к. теплопроводность воздуха низка. Теплопроводность воды в 20 раз выше, поэтому теплоотдача проведением играет значительную роль и становится существенным фактором переохлаждения в случае влажной одежды, сырых носков и т.д.

ь Более эффективна теплоотдача путем конвекции (т.е. перемещением частиц газа или жидкости, смешивание их нагретых слоев с охлажденными). В воздушной среде даже в условиях покоя на теплоотдачу конвекцией приходится до 30% потерь тепла. Роль конвекции на ветру или при движении человека еще более возрастает.

ь Передача тепла излучением от нагретого тела к холодному совершается согласно закону Стефана-Больцмана и пропорциональна разности четвертых степеней температуры кожи (одежды) и поверхности окружающих предметов. Этим путем в условиях "комфорта" раздетый человек отдает до 45% тепловой энергии, но для тепло одетого человека особой роли теплопотери излучением не играют.

ь Испарение влаги с кожи и поверхности легких также эффективный путь теплоотдачи (до 25%) в условиях "комфорта". В условиях высокой температуры окружающей среды и интенсивной мышечной деятельности теплоотдача испарением пота играет доминирующую роль - с 1 граммом пота уносится 0,6 ккал энергии. Нетрудно подсчитать общий объем теряемого с потом тепла, если учесть, что в условиях интенсивной мышечной деятельности человек за восьмичасовой рабочий день может отдать до 10 - 12 литров жидкости. На холоде теплопотери с потом у хорошо одетого человека невелики, но и здесь надо учитывать теплоотдачу за счет дыхания. При этом процессе совмещаются сразу два механизма теплоотдачи - конвекция и испарение. Потери тепла и жидкости с дыханием довольно значительны, особенно при интенсивной мышечной деятельности в условиях низкой влажности атмосферного воздуха.

Существенным фактором, влияющим на процессы терморегуляции, являются вазомоторные (сосудодвигательные) реакции кожи. При максимально выраженном сужении сосудистого русла теплопотери могут снизиться на 70%, при максимальном расширении - возрасти на 90%.

Видовые отличия химической терморегуляции выражаются в разнице уровня основного (в зоне термонейтральности) обмена, положения и ширины термонейтральной зоны, интенсивности химической терморегуляции (повышение обмена при снижении температуры среды на 1"С), а также в диапазоне эффективного действия терморегуляции. Все эти параметры отражают экологическую специфику отдельных видов и адаптивным образом меняются в зависимости от географического положения региона, сезона года, высоты над уровнем моря и ряда других экологических факторов.

Регуляторные реакции, направленные на сохранение постоянной температуры тела при перегреве, представлены различными механизмами усиления теплоотдачи во внешнюю среду. Среди них широко распространена и обладает высокой эффективностью теплоотдача путем интенсификации испарения влаги с поверхности тела или (и) верхних дыхательных путей. При испарении влаги расходуется тепло, что может способствовать сохранению теплового баланса. Реакция включается при признаках начинающегося перегрева организма.

Итак, адаптивные изменения теплообмена в организме человека могут быть направлены не только на поддержание высокого уровня обмена веществ, как у большинства людей, но и на установку низкого уровня в условиях, грозящих истощением энергетических резервов.

Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла телом.

Для поддержания постоянства температуры тела при повышении температуры внешней среды особенно важная роль принадлежит физической терморегуляции . Если температура окружающей среды иприближается или становится равной температуре тела, обмен веществ понижается, но это не может предохранить организм от перегревания, так как в организме все же происходит значительное теплообразование. В этих случаях основное значение для сохранения изотермии имеет физическая терморегуляция, осуществляемая путем усиления теплоотдачи. Образующееся в организме тепло выделяется преимущественно путем теплоизлучения (paдиационная теплоотдача) и теплопроведения (конвекционная теплоотдача). т. е. путем его непосредственной отдачи кожей воздуху и тем предметам, с кооторыми кожа соприкасается. Теплопроведение и теплоизлучение вместе в состоянии покоя составляют около 70% всей теплоотдачи взрослого человека (теплоизлучение - 55 %, теплопроведение - около 15%).

При обычных условиях в отсутствие активной работы около 27% тепла отдается телом путем испарения воды с поверхности кожи и легких. Если учесть, что потовые железы выделяют в сутки около 500 мл, а легкие- около 350 мл воды и что испарение 1 мл воды требует 0,58 ккал, то на испарение воды телом затрачивается около 500 ккал. 3% отдаваемого телом тепла уходят на нагревание выдыхаемого воздуха и выделенного кала и мочи.

Одежда служит человеку средством для уменьшения теплоотдачи. При этом потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух - плохой проводник тепла. Температура воздуха под одеждой достигает 30°. Напротив, обнаженное тело теряет тепло, потому что воздух на его поверхности все время сменяется. Поэтому температура кожи на обнаженных частях тела значительно ниже, чем на одетых.

В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира.

Теплоизлучение и теплопроведенне можно рассматривать вместе, так как они всегда изменяются параллельно и зависят от одного и того же фактора: разности температур кожи и окружающей среды. Температура кожи, следовательно, и интенсивность теплоизлучения и теплопроведения, может изменяться, во-первых, при перераспределении крови в сосудах, во-вторых, при изменении количества циркулирующей крови.

Перераспределение крови и разных сосудистых областях происходит следующим образом: на холоду кровеносные сосуды кожи, главным образом арториолы, суживаются, и большее количество крови поступает в сосуды органов брюшной полости. Поверхностные слои кожи, получая меньшей теплой крови, излучают меньше тепла и меньше нагревают окружающую среду - теплоотдача уменьшается. При сильном охлаждении конечностей происходит, кроме того, открытие артерио-венозных анастомозов, что уменьшает количество крови, поступающее в капилляры кожи и препятствует тем самым теплоотдаче.

При высокой температуре окружающей среды сосуды кожи расширяются, теплая кровь приливает к коже, температура ее повышается, поэтому повышается и излучение, и проведение тепла.

Увеличение количества циркулирующей крови при высокой температуре окружающей среды достигается путем перехода воды из тканей в кровь, а также тем, что селезенка и другие кровяные депо выбрасывают в общую циркуляцию дополнительные количества крови. На холоду вследствие противоположных процессов количество циркулирующей крови значительно уменьшается. При увеличении количества циркулирующей крови увеличивается, конечно, и количество крови, проходящей через кожу, что повышает отдачу кожей тепла в окружающую среду.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды весьма большое значение имеет испарение с поверхности кожи. Таким путем организм отдает при высокой температуре очень большие количества тепла.

Значение потоотделения для поддержания постоянства температуры хорошо видно из следующего подсчета: в тропиках температура окружающего воздуха нередко достигает 37°, т. е. равна температуре тела ка. Это значит, что организм человека, живущего в этих условиях, не может отдавать образующееся в нем самом тепло путем теплоизлучения и теплопроведения. Единственным путем для отдачи тепла является испарение воды. Считая среднее теплообразование в сутки равным 2400- ккал и зная, что на испарение 1 г воды с поверхности тела расходуется ккал, получаем, что для удержания температуры тела человека на постоянном уровне при этих условиях необходимо испарение 4,5 л воды Особенно интенсивное потоотделение происходит при высокой окружающей температуре в условиях мышечной работы, когда возрастает теплообразование в самом организме. При очень тяжелой работе выделение пота к рабочих горячих цехов может составить до 12 л за день.

Испарение воды зависит от относительной влажности воздуха и в насыщенном водяными парами воздухе совершаться не может. Поэтому высокая температура при высокой влажности атмосферы переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе, например в бане, пот выделяется в большом количестве, но неиспаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла; только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет «эффективное потоотделение»).

Плохо переносится также непроницаемая для воздуха одежда (кожаная, резиновая), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

Значение испарения пота с поверхности тела для поддержания постоянства температуры тела видно из того, что человек плохо переносит даже сравнительно низкую температуру окружающей среды (32°), если воздух влажен. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 часов при температуре 50-55°.

Некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух. Поэтому дыхание также участвует в удержании температуры тела на постоянном уровне. На холоду дыхательный центр рефлекторно угнетается, дыхание становится реже, наоборот при высокой окружающей температуре дыхательный центр возбуждается.

Из всего изложенного следует, что регуляция температуры тела осуществляется путем совместного действия, с одной стороны, механизмов,. регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой стороны, механизмов, регулирующих кровоснабжение кожи, потоотделение и дыхание (физическая регуляция тепла).

4. Механизмы терморегуляции

У теплокровных животных и человека (т.н. гомойотермных организмов), в отличие от холоднокровных (или пойкилотермных), постоянная температура тела является обязательным условием существования, одним из кардинальных параметров гомеостаза (или постоянства) внутренней среды организма.

Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его “ядра”), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика организма человека состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.

Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах - так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 - 400 % . Характерно, что по доле участия в терморегуляторном теплообразовании мышцы неравноценны.

При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.

Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.

Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм человека, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его “нормальной” (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.

Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня.обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.

Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции, на протяжении которой температура также остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.

Еще в 1902 г. Рубнер предложил различать два типа этих механизмов - терморегуляцию "химическую" и "физическую". Первая связана с изменением теплопродукции в тканях (напряжением химических реакций обмена), вторая - характеризуется теплоотдачей и перераспределением тепла. Наряду с кровообращением важная роль в физической терморегуляции принадлежит потоотделению, поэтому особая функция теплоотдачи принадлежит коже - здесь происходит остывание нагретой в мышцах или в "ядре" крови, здесь реализуются механизмы потообразования и потоотделения.

ь В "норме" теплопроведением можно пренебречь, т.к. теплопроводность воздуха низка. Теплопроводность воды в 20 раз выше, поэтому теплоотдача проведением играет значительную роль и становится существенным фактором переохлаждения в случае влажной одежды, сырых носков и т.д.

ь Более эффективна теплоотдача путем конвекции (т.е. перемещением частиц газа или жидкости, смешивание их нагретых слоев с охлажденными). В воздушной среде даже в условиях покоя на теплоотдачу конвекцией приходится до 30% потерь тепла. Роль конвекции на ветру или при движении человека еще более возрастает.

ь Передача тепла излучением от нагретого тела к холодному совершается согласно закону Стефана-Больцмана и пропорциональна разности четвертых степеней температуры кожи (одежды) и поверхности окружающих предметов. Этим путем в условиях "комфорта" раздетый человек отдает до 45% тепловой энергии, но для тепло одетого человека особой роли теплопотери излучением не играют.

ь Испарение влаги с кожи и поверхности легких также эффективный путь теплоотдачи (до 25%) в условиях "комфорта". В условиях высокой температуры окружающей среды и интенсивной мышечной деятельности теплоотдача испарением пота играет доминирующую роль - с 1 граммом пота уносится 0,6 ккал энергии. Нетрудно подсчитать общий объем теряемого с потом тепла, если учесть, что в условиях интенсивной мышечной деятельности человек за восьмичасовой рабочий день может отдать до 10 - 12 литров жидкости. На холоде теплопотери с потом у хорошо одетого человека невелики, но и здесь надо учитывать теплоотдачу за счет дыхания. При этом процессе совмещаются сразу два механизма теплоотдачи - конвекция и испарение. Потери тепла и жидкости с дыханием довольно значительны, особенно при интенсивной мышечной деятельности в условиях низкой влажности атмосферного воздуха.

Существенным фактором, влияющим на процессы терморегуляции, являются вазомоторные (сосудодвигательные) реакции кожи. При максимально выраженном сужении сосудистого русла теплопотери могут снизиться на 70%, при максимальном расширении - возрасти на 90%.

Видовые отличия химической терморегуляции выражаются в разнице уровня основного (в зоне термонейтральности) обмена, положения и ширины термонейтральной зоны, интенсивности химической терморегуляции (повышение обмена при снижении температуры среды на 1С), а также в диапазоне эффективного действия терморегуляции. Все эти параметры отражают экологическую специфику отдельных видов и адаптивным образом меняются в зависимости от географического положения региона, сезона года, высоты над уровнем моря и ряда других экологических факторов.

Регуляторные реакции, направленные на сохранение постоянной температуры тела при перегреве, представлены различными механизмами усиления теплоотдачи во внешнюю среду. Среди них широко распространена и обладает высокой эффективностью теплоотдача путем интенсификации испарения влаги с поверхности тела или (и) верхних дыхательных путей. При испарении влаги расходуется тепло, что может способствовать сохранению теплового баланса. Реакция включается при признаках начинающегося перегрева организма.

Итак, адаптивные изменения теплообмена в организме человека могут быть направлены не только на поддержание высокого уровня обмена веществ, как у большинства людей, но и на установку низкого уровня в условиях, грозящих истощением энергетических резервов.

Температура тела зависит от двух факторов: интенсивности образования тепла (теплопродукции) и величины потерь тепла (теплоотдачи). Главным условием поддержания постоянной температуры тела гомойотермных животных, в том числе и человека...

Адаптация организма к воздействию различных температур

Нарушения терморегуляции могут возникать при повреждении центральных и периферических аппаратов температурной чувствительности (кровоизлияния, опухоли в области гипоталамуса, некоторые инфекции)...

Гломерулонефрит и беременность

Гемодинамические механизмы гипертонии при хроническом гломерулонефрите иные. По нашим данным, развивается эукинетический (с нормальным сердечным выбросом) или гипокинетический (с уменьшенным минутным объемом крови) тип кровообращения...

Иглорефлексотерапия

Современная медицина при диагностике, изучении этиологии, патогенеза и методов лечения заболеваний предпочитает пользоваться конкретными категориями (морфологическими, физиологическими, биохимическими и др.)...

Интенсивная терапия тяжелой черепно-мозговой травмы

При черепно-мозговых травмах предусматривается выделение зон первичного и вторичного повреждения. Зона первичного повреждения представляет собой проблему нейрохирургов. Зона вторичного повреждения - это область мозга...

Ишемическая болезнь сердца. Бронхиальная астма. Общие свойства витаминов

Ишемическая болезнь сердца - это хронический патологический процесс, обусловленный недостаточностью кровоснабжения миокарда, в подавляющем большинстве случаев вследствие атеросклероза коронарных артерий (97 - 98%)...

Кислотно-основное равновесие

В процессе метаболизма образуются кислые продукты: 1) летучие - СО2 около 15000 ммоль/сут (0,13 ммоль/кг * мин-1); 2) нелетучие - Н+ около 30-80 ммоль (1 ммоль/кг* сут-1); 3) молочная и пировиноградная (при окислении углеводов), серная, фосфорная, мочевая кислоты...

Кишечный дисбиоз и хронические инфекции: урогенитальные и др.

Нарушение вышепредставленных количественных и качественных соотношений микроорганизмов в указанных зонах тонкого и толстого кишечника (что обозначается термином «дисбиоз кишечника») сопровождается превалированием влияний...

Механизмы и последствия тромбообразования

Тромбозом (от греч, фспмвпо-комок) называется прижизненное местное пристеночное образование в сосудах или сердце плотного конгломерата из форменных элементов крови и стабилизированного фибрина. Сам конгломерат -- это тромб...

4. Нарушение сердечного ритма. 2.1 Западение языка У находящегося ещё в наркотическом сне больного мышцы лица, языка и тела расслаблены. Расслабленный язык может сместиться вниз и закрыть просвет дыхательных путей...

Особенности ухода за больными в послеоперационном периоде

Нарушение терморегуляции после наркоза может выражаться в резком повышении или снижении температуры тела, сильном ознобе. При необходимости требуется накрыть больного, или же наоборот...

Гомойотермия - постоянство температуры тела - делает человека независимым от температурных условий проживания, так как обеспечивающие его жизнедеятельность...