Главная · Болезни желудка · Функциональная магнитно резонансная томография межполушарной асимметрии. Функциональное мрт исследование головного мозга (фмрт): принципы, что показывает. Линейное дополнение от многократной активации

Функциональная магнитно резонансная томография межполушарной асимметрии. Функциональное мрт исследование головного мозга (фмрт): принципы, что показывает. Линейное дополнение от многократной активации

Функциональная магнитно-резонансная томография (фМРТ) - методика МРТ, которая измеряет гемодинамический ответ (изменение кровотока), связанный с активностью нейронов. фМРТ не позволяет увидеть электрическую активность нейронов напрямую, а делает это опосредованно, благодаря феномену нейроваскулярного взаимодействия. Данный феномен представляет собой региональное изменение кровотока в ответ на активацию близлежащих нейронов, поскольку при усилении их активности они нуждаются в большем количестве кислорода и питательных веществ, приносимых с током крови.

Основные принципы фМРТ. фМРТ является методикой нейровизуализации, использующей окси-гемоглобин и дезокси-гемоглобин в кровеносных сосудах как эндогенный контрастный агент. При этом используется принцип BOLD-контрастности (blood oxygenation leveldependent contrast - контрастность, зависящая от степени насыщения крови кислородом), открытый Seiji Ogawa в 1990 году. BOLD-контраст - это различие МР-сигнала на изображениях c использованием градиентных последовательностей в зависимости от процентного содержания дезоксигемоглобина. Методика BOLD- фМРТ заключается в следующем: повышение нейрональной активности вызывает местное увеличение потребления кислорода. Это ведет к увеличению уровня парамагнетика дезоксигемоголобина, который снижает уровень сигнала фМРТ. Но через несколько секунд нейрональная активность вызывает также увеличение церебрального кровотока и объема крови, что ведет к увеличению притока артериальной крови и, следовательно, к увеличению оксигемоглобина, который повышает уровень сигнала фМРТ. По неизвестным пока причинам количество оксигенированной крови, которая поступает в ответ на активность нейронов, сильно превышает метаболитическое потребление кислорода. Эта, своего рода, сверхкомпенсация оксигемоглобина ведет к изменению в соотношении оксигемоглобина и дезоксигемоглобина, что измеряется и является основой для BOLD- фМРТ сигнала.

Существуют два основных метода проведения фМРТ: [1 ] с измерением функциональной активности коры головного мозга при выполнении определенного задания по сравнению с его активностью в покое/с контрольным заданием (так называемая task-fMRI); [2 ] с измерением функциональной активности коры головного мозга в покое (так называемая resting state fMRI - RS-fMRI).

При проведении фМРТ-исследования с выполнением определенной парадигмы, задания, которые выполняет испытуемый, могут быть различными: двигательными, зрительными, когнитивными, речевыми и т.д. После проведения фМРТ полученные функциональные данные подвергаются статистическому анализу. Результатом является информация о зонах активации в виде цветных карт, наложенных на анатомические данные, и те же самые данные могут быть представлены в цифровом формате с указанием статистической значимости зоны активации, ее объема и координат ее центра в стереотаксическом пространстве. Однако в последние 10 лет всё больший интерес исследователей привлекает методика фМРТ покоя (фМРТп). Принцип ее действия остается таким же, как и при классической фМРТ (task-fMRI). Единственным отличием является отсутствие при фМРТп каких-либо парадигм (т.е. активных заданий или воздействий, предъявляемых пациенту). Во время проведения фМРТп обследуемый субъект находится в МР-томографе в состоянии покоя, ему даются инструкции максимально расслабиться и не думать о чем-либо конкретном. В различных работах встречаются разные взгляды относительно того, нужно ли обследуемому субъекту закрывать глаза или нет. Сторонники оставления глаз открытыми аргументируют свою позицию тем, что это предотвращает засыпание субъекта.

В каких же случаях проводят фМРТ ?

Во-первых, в чисто научных целях: это исследование работы нормального мозга и его функциональной асимметрии. Данная методика возродила интерес исследователей к картированию функций головного мозга: не прибегая к инвазивным вмешательствам можно увидеть, какие зоны головного мозга отвечают за тот или иной процесс. Пожалуй, наибольший прорыв был сделан в понимании высших когнитивных процессов, включая внимание, память и исполнительные функции. Подобные исследования позволили применять фМРТ в практических целях, далеких от медицины и нейронаук (в качестве детектора лжи, при маркетинговых исследованиях и др.).

Во-вторых, фМРТ начинает активно применяться в практической медицине, в частности, для предоперационного картирования основных функций (двигательных, речевых) перед нейро-хирургическими вмешательствами по поводу объемных образований головного мозга или некурабельной эпилепсии. Как правило, оценивают моторные зоны для рук и ног, языка, а также речевые зоны - Брока и Вернике: их наличие, расположение относительно очага поражения, наличие гомологов в здоровом полушарии, компенсаторное усиление активации в противоположном полушарии большого мозга или вторичных зонах. Эта информация помогает нейрохирургам оценить риск послеоперационного неврологического дефицита, выбрать наиболее удобный и наименее травматичный доступ, предположить объем резекции.

В-третьих, исследователи также пытаются внедрить фМРТ в рутинную клиническую практику при различных неврологических и психических заболеваниях. Основной целью многочисленных работ в данной области является оценка изменения функционирования мозга в ответ на повреждение того или иного его участка - выпадение и (или) переключение зон, их смещение и т.п., а также динамическое наблюдение перестройки зон активации в ответ на проводимую медикаментозную терапию и (или) реабилитационные мероприятия. В конечном счете, фМРТ-исследования, проводимые на больных различных категорий, могут помочь определить прогностическое значение различных вариантов функциональной перестройки коры для восстановления нарушенных функций и выработать оптимальные алгоритмы лечения.

Дополнительная информация по теме фМРТ :

статья «Передовые технологии нейровизуализации» М.А. Пирадов, М.М. Танашян, М.В. Кротенкова, В.В. Брюхов, Е.И. Кремнева, Р.Н. Коновалов; ФГБНУ «Научный центр неврологии» (журнал «Анналы клиничес-кой и экспериментальной неврологии» №4, 2015) [читать ];

статья «Функциональная магнитно-резонансная томография» Е.И. Кремнева, Р.Н. Коновалов, М.В. Кротенкова; Научный центр неврологии РАМН, Москва (журнал «Анналы клинической и эксперименталь-ной неврологии» №1, 2011) [читать ];

статья «Применение функциональной магнитно-резонансной томографии в клинике» Беляев А., Пек Кюнг К., Бреннан Н., Холодный А.; Онкологический центр «Мемориал Слоан-Кеттеринг», лаборатория функциональной МРТ, отделение радио-логии, г. Нью-Йорк, США (Russian electronic journal of radiology, №1, 2014) [читать ];

статья «Функциональная магнитно-резонансная томография покоя: новые возможности изучения физиологии и патологии мозга» Е.В. Селиверстова, Ю.А. Селиверстов, Р.Н. Коновалов, С.Н. Иллариошкин ФГБУ «Научный центр неврологии» РАМН, Москва (журнал «Анналы клинической и экспериментальной неврологии» №4, 2013) [читать ];

статья «Функциональная магнитно-резонансная томография покоя: возможности и будущее метода» Ю.А. Селивёрстов, Е.В. Селивёрстова, Р.Н. Коновалов, М.В. Кротенкова, С.Н. Иллариошкин, Научный центр неврологии РАМН, Москва (Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений, №1, 2014) [читать ];

статья «Функциональная магнитно-резонансная томография и нейронауки» М.Б. Штарк, А.М. Коростышевская, М.В. Резакова, А.А. Савелов; Институт молекулярной биологии и биофизики СО РАМН, г. Новосибирск; Институт «Международный томографический центр» СО РАН, г. Новосибирск; НПФ «Компьютерные системы биоуправления», г. Новосибирск (журнал «Успехи физиологических наук», №1, 2012) [читать ]


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “МРТ” Tag


  • Цитотоксические поражения мозолистого тела (CLOCCs)

    Цитотоксические поражения мозолистого тела (сytotoxic lesions of the corpus callosum, CLOCCs) - понятие, объединяющее в себе разнородную…

  • Церебральные нарушения обмена железа

    Железо участвует во многих жизненно важных процессах, таких как транспорт кислорода, митохондриальное дыхание, синтез ДНК, миелина,…

  • Феномен фокальной констрикции периферического нерва

    Дефиниция. Феномен «фокальной констрикции периферического нерва» (ФКПН) - это синдром [этиология которого часто остается невыясненной] острой…

  • Синдром умеренной энцефалопатии с обратимым поражением валика мозолистого тела

    Синдром умеренной энцефалопатии с обратимым поражением валика мозолистого тела (Mild Encephalopathy with Reversible Splenial lesion - MERS) - это…

Функциональная МРТ головного мозга с 1990-х годов прошлого века получила широкое распространение. Внедрение методики способствовало выявлению некоторых злокачественных образований (опухолей), которые другими методами выявить сложнее. Особенностями функциональных магнитно-резонансных исследований мозговой ткани является оценка изменений кровоснабжения вследствие изменения нейронной стимуляции спинного и головного мозга. Возможность получения качественных результатов при МР-томографии обусловлена усилением притока крови к области мозга, которая активно действует.

Специалисты изучили нормальную активность коры головного мозга, состояние ткани при опухолях, что позволило провести дифференциальную диагностику патологии. Отличия МР-сигнала в норме и при патологических состояниях делают нейровизуализацию незаменимым диагностическим методом.

Нейровизуализация стала разрабатываться в 1990-ом году, когда функциональная МРТ стала активно использоваться для диагностики образований головного мозга вследствие высокой достоверности, отсутствия лучевого облучения пациента. Единственным неудобством метода является необходимость длительного пребывания пациента на диагностическом столе.

Морфологические основы функциональной МРТ головного мозга

Глюкоза не является важным субстратом для работы головного мозга, но при ее отсутствии нарушается функционирование нейронных каналов, которые обеспечивают физиологическую работу мозговой ткани.

Глюкоза поступает к клеткам по сосудам. Одновременно в мозг попадает кислород, связанный молекулой гемоглобина эритроцитов. Молекулы кислорода участвуют в процессах тканевого дыхания. После потребления кислорода мозговыми клетками возникает окисление глюкозы. Биохимические реакции при тканевом дыхании способствуют изменению магнетизации тканей. Индуцированный МРТ-процесс регистрируется программным обеспечением, что позволяет получить трехмерное изображение с тщательной прорисовкой каждой отдельной детали.

Изменение магнитных свойств крови возникает практически при всех злокачественных образованиях головного мозга. Избыточный приток крови определяется программным обеспечением при сравнении с нормальными величинами. Физиологически прослеживается разный МР-сигнал от поясной коры, таламуса, базальных ганглиев.

Низкий поток прослеживается в париетальной, латеральной, лобной доле. Изменение микроциркуляции данных областей сильно изменяет чувствительность сигнала.

Функциональная диагностика МРТ зависит от состояния и количества гемоглобина в исследуемой области. Молекула вещества может содержать кислород или его альтернативные заменители. Под действием сильного магнитного поля происходит колебание кислорода, что искажает качество сигнала. Намагниченность канала приводит к быстрому полураспаду кислорода. Воздействие сильного магнитного поля усиливает период полураспада вещества.

На основе информации можно сделать вывод относительно более высокого качества МР-сигнала в областях мозга, которые насыщены кислорода. Злокачественные мозговые образования имеют густую сосудистую сеть, поэтому хорошо визуализируются на томограммах. Для качественных результатов интенсивность магнитного поля должно быть выше 1,5 Тесла. Последовательность импульсов приводит к повышению полураспада.

Активность МР-сигнала, регистрируемого от активности нейронов, носит название «гемодинамический ответ». Термин определяет скорость нейронных процессов. Физиологическое значение параметра – 1-2 секунды. Данный интервал недостаточен для качественной диагностики. Чтобы получить хорошую визуализацию при объемных образованиях мозга магнитно-резонансная диагностика проводится с дополнительным стимулированием глюкозой. После ее введения пик активности наблюдается через 5 секунд.

Функциональная диагностика МРТ при раке мозга

Применение МРТ в нейрорадиологии расширяется. Для диагностики опухолей головного и спинного мозга применяется не только функциональное исследование. В последнее время активное распространение получили современные способы:

Перфузионно-взвешенная;
Диффузионная;
Контрастно-насыщенное исследование (BOLD).

Контрастирование BOLD после насыщения кислородом помогает провести диагностику активности сенсорной, моторной коры, очагов речи Вернике и Брока.

Способ базируется на регистрации сигнала после специфической стимуляции. Функциональная диагностика МРТ при сравнении с другими способами (ПЭТ, эмиссионная КТ, электроэнцефалография) Функциональное МРТ помогает получить картинку с пространственным разрешением.

Для понятия сути графической картины мозга при магнитно-резонансной томографии проводим изображения мозговой ткани после МРТ после чтения «сырых» изображений (а), совмещения нескольких томограмм (б).

Двигательная активность мозговой коры после использования способа корреляционных коэффициентов позволяет получить пространственное изображение результатов с визуализацией зон повышенной магнитной активности. Область Брока при функциональной МРТ определяется после обработки «сырых» томограмм. Стимуляция корреляционных коэффициентов помогает генерировать график соотношения интенсивности сигнала в определенном временном промежутке.

На следующих томограммах прослеживается картина у пациента при апластической эпендимоме – опухолью с повышенным смещением возбудимости в зоне, которая отвечает за активность функциональной коры мозга.

График показывает активные области, в которых локализуется злокачественное новообразование. После получения данных томограмм для иссечения патологической области была проведена субтотальная резекция.

На следующих МР-томограммах изображена глиобластома. Функциональная диагностика позволяет качественно визуализировать данное образование. В данной области располагает зона, отвечающая за активность пальцев правой руки. На изображениях визуализируется усиление активности в областях после стимуляции глюкозой. Функциональная магнитно-резонансная диагностика при глиобластоме в данном случае позволила точно визуализировать локализацию, размеры образования. Расположение рака в моторной коре приведет к отказу движений пальцев правой руки при возникновении атипичных клеток в коре головного мозга.

При некоторых образованиях функциональная МРТ головного мозга показывает несколько десятков разных изображений, возникающих вследствие динамического изменения МР-сигнала с искажением до 5%. При таком разнообразии сложно установить правильность расположения патологического образования. Для исключения субъективности зрительной оценки требуется программная обработка «сырых» снимков, полученная с использованием статистических способов.

Для получения качественных результатов при функциональной диагностике МРТ в сравнении с традиционным аналогом требуется помощь пациента. При тщательной подготовке повышается метаболизм глюкозы и кислорода, что снижает количество ложноположительных результатов, артефактов.

Высокое техническое оснащение магнитно-резонансных томографов позволяет улучшить картинку.

Самый частый вариант применения функциональной магнитно-резонансной томографии – это визуализация основных зон активности коры головного мозга – зрительной, речевой, моторной.

Функциональное МРТ исследование головного мозга – клинические эксперименты

Зрительная стимуляция корковых зон с помощью функционального МРТ по методу «J.Belliveau» предполагает зрительную стимуляцию с использованием болюстного контрастирования препаратом гадолинием. Подход позволяет регистрировать падение эхо-сигнала вследствие разной чувствительности между контрастом, проходящим по сосудам и окружающим тканям.

Клинические исследования установили, что зрительная стимуляция корковых зон на свету и в темноте сопровождается разницей активности примерно на 30%. Такие данные получены при обследовании на животных.

Эксперименты были основаны на методику определения сигнала, полученного от дезоксигемоглобина, обладающего парамагнитными способностями. На протяжении первых 5 минут после стимулирования мозговой активности глюкозой активируется процесс анаэробного гликолиза.

Стимуляция приводит к повышению перфузионной активности нейронов, так как микроциркуляция после поступления глюкозы существенно усиливается за счет падения концентрации дезоксигемоглобина – вещества, переносящего углекислый газ.

На Т2-взвешенных томограммах прослеживается увеличение активности сигнала – методика получила название BOLD-контрастирование.

Такая методика функционального контрастирования не является совершенной. При планировании нейрохирургических операций на опухолях требуется проведение обычного и функционального исследования.

Сложности функциональной магнитно-резонансной томографии заключаются в необходимости пациента выполнять активирующие действия. Для этого через переговорное устройство оператор передает задание, которое человек должен сделать с особой тщательностью.

Тренировку пациента необходимо проводить до функционального МРТ исследования. Заранее требуется умственный покой, подготовка двигательной активности.

Статистическая обработка результатов при правильном выполнении позволяет тщательно обследовать «сырые» томограммы, составлять на их основе трехмерное изображение. Для грамотной оценки значений нужно проводить не только структурную, но и функциональную оценку состояния коры головного мозга. Результаты обследования оцениваются одновременно нейрохирургом и неврологом.

Внедрению МРТ с функциональными пробами в массовую медицинскую практику не позволяют ограничения:

1. Высокие требования к томографу;
2. Отсутствие стандартизированных разработок относительно заданий;
3. Появление ложных результатов, артефактов;
4. Выполнение человеком непроизвольных движений;
5. Наличием в теле металлических предметов;
6. Потребность в дополнительных звуковых и визуальных стимуляторах;
7. Высокая чувствительность металлов к эхо-планарным последовательностям.

Перечисленные противопоказания ограничивают распространение исследования, но их можно устранить путем тщательной разработки рекомендаций к МРТ.

Основные цели проведения функционального магнитно-резонансной томографии:

Анализ локализации патологического очага для прогнозирования хода хирургического вмешательства при опухоли, оценки функциональной активности;
Планирование краниотомии в областях на удалении от зон основной активности мозга (зрительная, речевая, моторная, чувствительная);
Выбор группы людей для инвазивного картирования.

Функциональные исследования существенно коррелируют с прямой стимуляцией корковой активности мозговой ткани специальными электродами.

Максимальный интерес представляет функциональная МРТ для российских врачей, так как картирование в нашей стране только начинает развиваться. Для планирования оперативной активности магнитно-резонансное исследование с функциональными пробами представляет большой интерес.

Таким образом, функциональные исследования МРТ в нашей стране находятся на уровне практических проб. Частое использование процедуры наблюдается при супратенториальных опухолях, когда МРТ исследование является необходимым дополнением предоперационного этапа.

В заключение выделим современные аспекты развития технологии «мозг-компьютер». На основе данной технологии разрабатывается «компьютерный симбиоз». Сочетание электроэнцефалографии и МРТ позволяет создать полноценную картинку функционирования головного мозга. С помощью наложения одного исследования на другое получается качественная картинка, указывающая на соотношение анатомических и функциональных особенностей работы нейронов.

Как увидеть мысли. Неортодоксальные приложения магнитно-резонансной томографии

Магнитно-резонансная томография (МРТ) сегодня используется не только для диагностики, но и для картирования функционального состояния нейронных сетей, позволяя в прямом смысле увидеть работу мозга в масштабе реального времени. С ее появилась возможность создания технологии игрового биоуправления, базирующейся на естественных механизмах саморегуляции функций человеческого организма.

В уникальных компьютерных играх, разработанных новосибирскими специалистами, пользователь обучается «руководить» виртуальным игровым сюжетом через волевые изменения своих физиологических характеристик (пульса, температуры, электрической активности мозга и т.п.). Игры можно использовать для решения широкого класса лечебных и реабилитационных задач, в том числе для оценки актуального психофизиологического состояния человека. Подобная игровая деятельность сама по себе обладает выраженным антистрессовым эффектом, но, главное, с помощью этой технологии можно раскрыть потенциальные ресурсы организма, которыми мы в нашей обычной жизни не умеем пользоваться

До недавнего времени фундаментальные сведения о работе мозга удавалось получать лишь из косвенных источников. Речь идет о прямых экспериментах на животных; наблюдениях за больными людьми, у которых поражение того или иного участка мозга проявляется в виде параличей, нарушений речи или памяти; нейропсихологическом тестировании; операциях на открытом мозге, позволяющих нейрохирургу видеть реакцию на конкретные раздражители; наконец, регистрации электрической активности мозга. Однако на основе результатов, полученных с помощью этих подходов, нельзя описать, как работает мозг при решении той или иной конкретной задачи. Возможность непосредственно наблюдать динамику познавательной (когнитивной) деятельности мозга, иными словами, «видеть мысли» появилась лишь с внедрением в исследовательскую практику технологии функциональной магнитно-резонансной томографии.

Гипотеза о связи интенсивности кровоснабжения мозга с его активностью получила распространение еще в конце XIX в. с легкой руки выдающегося британского физиолога Ч. Шеррингтона. Спустя много лет наличие этой связи было доказано радиографическими методами, подтвердившими прямую зависимость между обменными процессами в определенных работающих участках мозга и скоростью доставки к ним кислорода.

А чуть больше двух десятилетий назад сотрудники американской исследовательской организации «AT&T Bell laboratories» описали принцип визуализации активности зон головного мозга в режиме реального времени с использованием магнитно-резонансной томографии (МРТ), при которой контрастность изображения определяется степенью насыщения крови кислородом (Ogawa et al. , 1990). Именно этот принцип лег в основу технологии функциональной магнитно-резонансной томографии (фМРТ) – динамического исследования активных зон мозговых структур в момент их деятельности, впервые опробованного на человеке спустя два года после первой публикации.

Маркер – кислород

Активация участка мозга всегда связана с потреблением энергии, поэтому она влечет за собой ускорение обмена глюкозы и трансформацию молекул гемоглобина – поставщика кислорода в нашем организме, – при которой оксигемоглобин, обратимо соединенный с кислородом, превращается в дезоксигемоглобин («восстановленный» гемоглобин).

МРТ (магнитно-резонансная томография) – это диагностическая процедура, в основе которой лежит эффект ядерно-магнитного резонанса. Суть его в том, что под действием магнитного поля протоны (положительно заряженные ядра водорода) в живых тканях способны переходить на более высокий энергетический уровень, а затем возвращаться в исходное состояние. Последнее сопровождается выделением энергии, которую можно измерить.
Затем полученный сигнал преобразовывают в так называемое Т1-взвешенное изображение (Т1 – время, за которое две трети протонов возвращаются в исходное состояние). Получаемое на выходе изображение будет различно для разных тканей, например, здоровых и больных.
Современные методики МРТ позволяют не только визуализировать с высоким качеством различные внутренние органы, но и исследовать их функцию. Благодаря отсутствию ионизирующего облучения этот метод можно использовать без ограничений и многократно проводить повторные исследования

Ключевым фактором для магнитно-резонансной томографии являются различия магнитных свойств разных форм гемоглобина. Так, оксигемоглобин является диамагнетиком , т. е. веществом, намагничивающимся против направления внешнего магнитного поля. Дезоксигемоглобин («восстановленный» гемоглобин), напротив, имеет свойства парамагнетика , намагничиваясь в направлении внешнего магнитного поля. Величина сигнала МРТ зависит от количества дезоксигемоглобина в ткани: чем выше концентрация, тем ниже сигнал. Показатель, который определяется соотношением двух форм гемоглобина и зависит от уровня кислорода в крови, называют BOLD (от анг. blood oxygenation level dependent ).

Чем активнее работает участок мозга, тем больше кислорода он потребляет. При формировании действующего нейронного ансамбля увеличение локального потребления энергии уже в первые секунды приводит к возрастанию концентрации парамагнитного дезоксигемоглобина; затем следует реакция сосудистой системы, заключающаяся в увеличении местного крово­снабжения и кровенаполнения тканей мозга из-за роста объема и скорости кровотока.

Отсюда следует, что относительная величина сигнала МРТ может служить мерой активности зон мозга. Более того, результаты, полученные под контролем электроэнцефалографии на зрительной коре открытого мозга приматов, дают основания утверждать, что сигнал МРТ является линейным откликом на электрическую активность, которую генерирует действующий нейронный ансамбль (Logothetis et al. , 2002).

Таким образом, функциональная МРТ, ориентированная на детектирование BOLD эффекта, является на сегодня оптимальным инструментом картирования нейрональной активности, точнее, функционального состояния нейронных сетей – основы визуализации наших мыслей и идей. Другими словами, именно с помощью фМРТ можно в прямом смысле увидеть, как наш мозг решает задачи в масштабе реального времени.

Сила мысли

С технологией фМРТ тесно связана нейробиологическая технология «интерфейса мозг–компьютер», своего рода «компьютерный симбиоз» (Каплан, 2005, 2012; Черникова и др., 2010). Речь идет о возможности с помощью электроэнцефалограммы получить отображение устойчивого «рисунка» биоэлектрической активности мозга, привязав этот рисунок к функции мозговых структур и образованию в них новых устойчивых нейронных ансамблей. При этом электроэнцефалограмма является не только источником информации о внутримозговых событиях: эти данные можно использовать в качестве сигнала обратной связи для контура произвольной саморегуляции функций организма.

Хотя нейробиология является самостоятельной научной областью, возникла она как «социальный продукт» для глубоких инвалидов, благодаря которому у людей, прикованных к коляске и лишенных самостоятельных двигательных навыков, появляется возможность управления искусственными конечностями, такими как механическая рука (Hochberg et al. , 2012).

Еще в конце XIX в. французский нейрохирург П. Брока (1861) описал нарушения речи, вызванные поражением определенной зоны левого полушария. Его работа положила начало многочисленным исследованиям, посвященным развитию клинического анализа языковой организации мозга и ее нарушениям. И определение траектории речевого развития – локализации «центра речи» на пространстве соответствующих зон мозга – стало одной из наиболее крупных областей применения фМРТ.
Сведения о локализации в мозге речевых (буквенных, семантических и синтаксических) зон сегодня конструктивно используются в нейрохирургической практике. Речь идет о предоперационном определении тех участков коры у пациентов с различными поражениями мозга, куда не должен вторгаться нож хирурга. На сегодня фМРТ является практически единственной технологией, которая позволяет определить такую «пограничную» зону

Одним из практических приложений нейробиологии является нейробиоуправление, нелекарственная технология, основанная на принципах вышеупомянутой адаптивной обратной связи – феномене, обеспечивающем механизм саморегуляции. В основе этой технологии лежит идея о том, что человека можно обучить волевому управлению неосознаваемыми физиологическими характеристиками, такими как частота пульса и параметры ритмов электрической активности мозга.

Способность человека целенаправленно изменять параметры электроэнцефалограммы была впервые описана американским ученым Дж. Камия еще в 1958 г. (эту способность изучали с целью управления функциональным состоянием мозга пациента и изменения тенденции развития психики). Дальнейшие исследования доказали удивительные способности нашего мозга к внутренним перестройкам, не предусмотренным природой. Оказалось, что с помощью нейробиоуправления можно сформировать у человека ранее отсутствовавшие навыки саморегуляции, образовать новые и «пробудить» дремлющие мозговые образования. При этом фМРТ дает возможность визуализировать реальную временную и пространственную динамику работы мозга.

Игра – активность индивида, направленная на моделирование той или иной реальной деятельности. Она позволяет человеку формировать и совершенствовать функции управления собственным поведением и произвольной активностью в целом.
При использовании игрового биоуправления игрок становится активным субъектом лечебного (коррекционного) процесса или процесса обретения новых навыков

С практической точки зрения, особый интерес представляет технология так называемого игрового биоуправления, когда человек обучается «руководить» виртуальным игровым сюжетом через волевые изменения своих физиологических характеристик, таких как кардиограмма, пульс, температура кожи и электрическая активность мозга.

Обыграть себя

В контексте нейробиологии игра – это психологическая реальность с большим числом нестандартных ситуаций, в которых невозможно стереотипное поведение. Компьютерный игрок привыкает перемещаться из одного виртуального мира в другой, быстро адаптируясь к новым виртуальным реалиям на основе личностных предпочтений.

Во время игры мозг ведет активную деятельность, определяя вариант действий, который в данный момент представляется наиболее выигрышным. В случае использования биоуправления игрок, овладев навыками саморегуляции, может управлять этим процессом, так как адаптивная обратная связь позволяет не только увидеть и «проиграть» различные стратегии поведения, но и оценить степень их эффективности. В этом смысле эта технология представляет собой мощный механизм обучения человека новым поведенческим стереотипам.

На базе Международного томографического центра СО РАН совместно с НИИ молекулярной биологии и биофизики СО РАМН (Новосибирск) проведен эксперимент по нейровизуализации «волевого» управления виртуальным игровым сюжетом на группе молодых мужчин.

Испытуемым предлагался игровой сюжет «Вира!», посвященный поиску подводных сокровищ. Каждый испытуемый, находясь в кольцевом магните томографа, управлял одним из аквалангистов, опускавшихся на дно. Скорость игрока напрямую определялась частотой сердечных сокращений: чем медленнее пульс, тем выше скорость. На протяжении игры информация о частоте пульса передавалась в виде визуального ряда на экран монитора, доступный испытуемому. Чтобы победить в игре, требовалось научиться мысленно управлять частотой пульса, т. е. развить навыки замедления сердечного ритма.

По результатам игр у испытуемых было выявлено шесть разных вариантов поведения, и для каждого из них была определена ведущая стратегия саморегуляции.

Например, при стратегии «пробы и ошибки с выходом на результат» испытуемый сначала делал несколько неуспешных попыток, но в конце концов достигал поставленной цели. Испытуемые с такой тактикой основное внимание уделяли не регуляции собственных физиологических показателей (т. е. пульса), а контролю над непосредственным игровым действием. Стратегия «маятниковая динамика» характеризовалась чередованием успешных и неуспешных попыток, а «последовательное обучение» – улучшением результата от попытки к попытке.

Анализ результатов эксперимента свидетельствует об определенной последовательности возникновения и развития зон активности в головном мозге испытуемых. «Пик» соревновательного сюжета приходился на четвертую – шестую попытки, когда последовательно в борьбу за выигрыш вовлекалось все большее число вновь образующихся нейронных ансамблей.

Интересно, что новые зоны этой активности локализовались, в том числе и в мозжечке. Анализ динамики их образования дает основание предположить, что мозжечок выполняет в нашем головном мозге роль не только регулятора двигательных функций, но и модификатора когнитивных (познавательных) функций, регулируя скорость, силу, ритм и точность мышления. При этом происходит последовательное развертывание программы когнитивных операций в режиме, организованном адаптивной обратной связью.

Именно так в игре «Вира!» формировалась «дорожная карта» когнитивного управления игровым сюжетом, согласно стратегии «проб и ошибок», наиболее распространенному варианту саморегуляции.

Ложь отличается от правды

Виртуальная реальность, представленная в виде игрового соревновательного сюжета, управляемого через волевую регуляцию физиологической характеристики, дает человеку уникальную возможность проявить обычно блокируемые особенности поведения. И в этом смысле не только виртуальная игра, но и вообще любой игровой тренинг позволяют нам выявить скрытые способности, которые мы сможем успешно использовать в реальной жизни.

В этом контексте представляет интерес анализ данных игрового эксперимента, проведенного в МТЦ СО РАН, в котором помимо «реального» биоуправления использовалось так называемое «имитационное» (ложное) биоуправление. Другими словами, когда развитие игрового сюжета было совершенно случайным и не зависело от действий испытуемого. При этом сами испытуемые не знали, что в одной из серий виртуальных тренингов реальная обратная связь отсутствует.

По оценке эффективности результата, достигнутого в этой игре, испытуемых можно разделить на две группы. Первая из них демонстрировала более эффективные стратегии саморегуляции при наличии реальной обратной связи, чем в случае «ложного» биоуправления. При этом даже в последнем случае испытуемым удавалось после нескольких неудачных попыток добиться замедления ритма сердечных сокращений.

Вторая группа продемонстрировала менее эффективную стратегию саморегуляции: даже на «реальном» этапе этим испытуемым удалось лишь частично добиться поставленной цели. При отсутствии же обратной связи наблюдался интенсивный и «хаотичный» поиск решения, что выражалось в увеличении разброса значений пульсового интервала.

И тем не менее обе эти группы испытуемых показали более высокую эффективность саморегуляции при реальном биоуправлении, чем при имитационном: мозг достаточно успешно отличал «правду» от «лжи».

Нужно сказать, что и реальное биоуправление, и его имитация сопровождались выразительной динамической картиной работы определенных мозговых образований, выражаемой в изменении объема активации и перераспределении зон активности. В процесс фактически вовлекалась вся поверхность коры головного мозга, причем подавляющее большинство корковых зон, задействованных при имитационном и реальном тренинге, пересекались и в обоих случаях характеризовались максимальными значениями активации. И все же надо отметить, что в режиме имитационного биоуправления ряд мозговых структур активизировался значительно сильнее, чем при реальном биоуправлении: новые нейронные ансамбли появлялись в мозжечке, веретенообразной извилине и в других отделах мозга.

БЕСПРОИГРЫШНЫЕ ИГРЫ Специалисты Института молекулярной биологии и биофизики СО РАМН (Новосибирск) и новосибирской Научно-производственной компании «Компьютерные системы биоуправления» создают уникальный продукт – компьютерные игры, соревновательный сюжет которых управляется физиологическими характеристиками человеческого организма (температурой, пульсом, дыханием, биотоками головного мозга и мышц).


Технология «компьютерного игрового биоуправления» базируется на естественных механизмах саморегуляции функций человеческого организма. При этом благодаря соревновательному характеру устраняется монотонность процедуры обучения: увлекательный сюжет мотивирует испытуемого, вызывая у него эмоциональный интерес к результату и таким образом способствуя более эффективному обучению навыкам саморегуляции.
Поскольку достижение выигрыша требует от испытуемого принятия нетривиальных решений, подобную игру можно квалифицировать как творческую обучающую деятельность, привлекательность которой заключается в непредвиденности конечного результата. Так как каждая последующая игровая попытка базируется на результате предыдущей, игровое биоуправление становится залогом самосовершенствования испытуемого, импульсом к поиску новых эффективных стратегий саморегуляции. А поскольку игрок мотивирован желанием выиграть, он вынужден держаться в предписываемых игрою рамках и сохранять спокойствие.
Игры, созданные на основе технологии биоуправления, можно использовать для решения широкого класса лечебных и реабилитационных задач. С их помощью можно оценить актуальное психофизиологическое состояние человека, к тому же подобная игровая деятельность сама по себе обладает выраженным антистрессовым эффектом. Но главное, с помощью этой технологии можно раскрыть потенциальные ресурсы организма, которыми мы в нашей обычной жизни не умеем пользоваться

Если же попытаться описать наиболее общий «маршрут» активации мозговых структур во время игры, то можно сказать, что после старта в работу сначала вовлекаются широкие корковые поля мозга, а заканчивается такой «когнитивный маршрут» в мозжечке. Последовательное вовлечение мозговых структур в организацию новых нейронных сетей во время виртуального тренинга обеспечивает возникновение нового навыка и его последующее закрепление в мозге. И в этом смысле подобные работы лежат в русле нового тренда в развитии современного социума, который получил название «игрофикация».

Эффективно или справедливо?

Психология – одна из наиболее перспективных сфер использования технологии нейровизуализации средствами фМРТ, потому что эта научная область практически лишена представлений о локализации (в анатомическом смысле) когнитивных функций. Ведь основные сведения об их «территориальной привязке» психологи обычно черпают из общения с пациентами, у которых инструментально обнаруживается локальное поражение мозга, либо которым на длительное время вживлены внутримозговые электроды.

В одной из работ американских исследователей была сделана попытка ответить на вопрос о локализации мозговых структур, призванных классифицировать такие когнитивные категории, как равенство и эффективность (Hsu Ming et al. , 2008). Другими словами, структур, призванных решить извечную дилемму: как следует действовать – эффективно или справедливо?

В игровом эксперименте испытуемых «усаживали» за руль грузовика, везущего продукты питания в «голодный» район Южной Африки. Условия были таковы: если испытуемый будет неукоснительно следовать инструкции и раздавать продукты поровну каждому голодающему, часть груза обязательно испортится в пути. Если же пренебречь половиной нуждающихся, то потеря продуктов уменьшится в разы, но, естественно, достанется меньшему числу людей. Как же поступить? Пожертвовать потерей продуктов или же, руководствуясь «разумным» выбором, оставить половину нуждающихся без надежды на помощь?

Оказалось, что эмоциональная оценка «эффективности», «справедливости» и «общей пользы» принимаемого решения осуществляется тремя разными мозговыми структурами. Отдел мозга, называемый «скорлупа» (лат. putamen ), отвечает за эффективность, кора «островка» (лат. insula ) защищает интересы справедливости, совокупную же меру эффективности и неравенства, т. е. полезность, оценивает септальный орган (лат. septum ).

Эти результаты согласуются с уже имеющимися данными, что именно вышеперечисленные мозговые структуры являются интеграторами различных психических «переменных» в вынесении окончательных «социально-ориентированных» приговоров и оценок. Можно предположить, что окончательное решение поставленной этической проблемы принимается путем сравнения сигналов из разных источников и сличения их с ретроспективным опытом, при этом в когнитивный процесс вовлекаются и другие области мозга.

Число публикаций, посвященных различным фундаментальным и прикладным аспектам функциональной магнитно-резонансной томографии и проблемам «интерфейса мозг–компьютер», за последние годы неуклонно растет (главным образом за рубежом, отечественных работ в этом списке практически нет). Развитие соответствующих технологий открывает сразу несколько перспективных прикладных направлений. Например, появилась возможность наблюдать за особенностями циркуляции крови в мозговом сегменте, находящемся в активированном состоянии, – это можно использовать для мониторинга определенных структур мозга в случае нарушения мозгового кровообращения (инсульта) или при подборе сосудистых препаратов.

Большие перспективы открывает и развитие когнитологии – направления нейронаук, занимающегося исследованием базовых механизмов работы мозга: «ментальными стратегиями», их локализацией, динамикой, способами использования и совершенствования в повседневной жизни. Так называемая «интерактивная стимуляция» дает возможности организовать обучающую (лечебную) обратную связь непосредственно через «заинтересованную» мозговую структуру. Визуализируя, например, поясную извилину или гиппокамп, вы получаете шанс «прямого разговора» с мозгом.

Функциональная магнитно-резонансная томография – мощный инструмент, позволяющий достичь качественно нового понимания организации головного мозга и особенностей высшей нервной деятельности человека и животных. Внедрение технологий фМРТ в различные сферы человеческой деятельности – нейро­маркетинг, профессиональный кастинг, оценку эффективности образовательных программ, «детекцию» лжи и т. п., окажет огромное влияние на дальнейшее развитие не только самих нейронаук, но и всего общества в целом.

Литература

Каплан А. Я. Нейрокомпьютерный симбиоз: движение силой мысли // НАУКА из первых рук. 2012. № 6 (48).

Штарк М. Б., Коростышевская А. М., Резакова М. В., Савелов А. А. Функциональная магнитно-резонансная томография и нейронауки // Успехи физиологических наук, 2012. Т. 43, №1. С. 3-29.

В публикации использованы фото М. А. Покровского

Что такое задержка речевого развития у детей и как она выявляется, должен представлять каждый родитель. Чем раньше заболевание будет диагностировано, тем успешнее пойдёт лечение и тем оптимистичнее будут прогнозы на будущее развитие малыша.

ЗРР - сложное заболевание, причины которого зачастую так и остаются невыясненными. Чаще всего оно определяется уже до четырёх лет, представляет собой существенное отставание для данного возраста от речевой нормы.

Такое серьёзное заболевание само не возникает: существуют причины задержки речевого развития, определяемые различными отклонениями. Это могут быть:

  • патологии внутриутробного развития;
  • родовые травмы;
  • повышенное ;
  • в результате генетической предрасположенности;
  • психические расстройства;
  • физические травмы;
  • снижение слуха;
  • заболевания головного мозга;
  • недоразвитость мускулов рта и лица.

Если причины задержки речевого развития остаются невыясненными, это затрудняет курс лечения, так как провоцирующий фактор при этом продолжает работать. Поэтому ребёнку с ЗРР необходимо комплексное обследование. Только так врачи могут поставить чёткий диагноз. Но как выявить заболевание на ранних этапах?

Симптомы ЗРР

Существуют определённые симптомы и признаки задержки речевого развития, которые можно выявить уже в самом раннем возрасте. Для этого родителям рекомендуется ознакомиться с возрастными нормативами развития речи:

  • 4 месяца : активная реакция на обращение взрослых - улыбка, плач, агукание;
  • 9–12 месяцев : попытки выговорить простые буквенные сочетания (на-на-на, ба-ба-ба и др.);
  • 12–18 месяцев : реакция на имена родных и слова, которые обозначают окружающие предметы;
  • 1,5–2 года : самостоятельное составление простых словосочетаний и предложений (подлежащее + сказуемое), выполнение простых просьб («дай мячик», «принеси мишку» и др.);
  • 3–4 года : самостоятельное построение мини-предложений, чёткое, без дефектов произношение слов.

При обнаружении отклонений от указанных возрастных норм, это верный признак задержки речевого развития, с которым нужно обязательно обратиться к специалисту - психологу, неврологу, логопеду. Только они могут точно определить, стоит ли беспокоиться, и дадут профессиональные советы по лечению и профилактике заболевания.

Диагностика

Комплексная диагностика задержки речевого развития у детей предполагает самые различные обследования:

  • сурдолог оценивает слух и выявляет его проблемы;
  • проводится возрастное тестирование: тест для выявления уровня психомоторного развития (денверский), по шкале раннего речевого развития, по шкале Бейли (оценка развития новорождённых);
  • беседа с родителями выявляет способы общения ребёнка с ними;
  • определяется моторика мышц лица, если есть затруднения при грудном вскармливании и наблюдается неспособность малыша повторять языком движения;
  • сравнение воспроизведения и понимания речи;
  • выясняется стимуляция речевого развития посредством анализа сведений о домашнем воспитании ребёнка, его окружении, которое должно помогать ему общаться.

Диагностика ЗРР предполагает выяснение причин задержки, а для этого необходимо пройти таких специалистов, как невропатолог, логопед, психиатр, детский психолог. В ряде случаев требуются анализы работы головного мозга - ЭКГ, МРТ, ЭХО-ЭГ и пр.

При своевременном выявлении (до двух лет) лечение задержки речевого развития при совместных усилиях родителей и лечащего врача заканчивается успешно.

  • Лекарственная терапия

При ЗРР нередко назначаются медикаментозные препараты различного действия, которые помогают восстановить речь. Кортексин, нейромультивит, актовегин, лецитин выступают в роли «активного питания» для нейронов мозга. Когитум - препарат, «подхлестывающий» деятельность речевых зон. Лекарства исключают самолечение и назначаются только неврологом или психиатром.

  • Лечебные процедуры

Магнитотерапия и электрорефлексотерапия выборочно восстанавливают работу центров головного мозга, которые отвечают за дикцию, речевую активность, словарный запас, интеллектуальные способности. Однако у электрорефлексотерапии немало противопоказаний: судорожный синдром, эпилепсия, психические расстройства.

  • Альтернативное лечение

Индивидуально для каждого ребёнка могут быть выбраны или .

  • Педагогическая коррекция

Лекарственная помощь оказывается нерезультативной при отсутствии вспомогательного педагогического воздействия. Дефектолог корректирует (исправляет и ослабляет) негативные тенденции развития, предупреждает возникновение вторичных отклонений и трудностей. Он использует для этого наглядные, технические, практические средства реабилитации, регулярно проводит с детьми игровые занятия по индивидуальному плану. Для лечения общей методики нет: помочь может только индивидуальный подход.

  • Логопедический массаж

При задержке речевого развития у детей логопедический массаж - очень эффективная процедура, когда специалист воздействует на определённые точки языка, губ, щёк, рук, мочек ушей. В зависимости от индивидуальных показателей, могут назначить зондовый массаж Новиковой, массаж по Краузе, Дьяковой, Приходько.

  • Упражнения

Дефектолог и родители дома должны выполнять с ребёнком игровые упражнения, направленные на развитие лицевых мышц, подвижности языка, слухового аппарата. Песенки, звукоподражания, сказкотерапия, скороговорки, артикуляционная гимнастика для лица, упражнения для мелкой моторики рук - разработок очень много, ими нужно пользоваться, выбирать по совету специалистов и регулярно заниматься с малышом.

Родители при этом не должны оставаться в стороне и возлагать все надежды только на врачей. С таким ребёнком нужно заниматься не только ежедневно, а ежечасно, что требует немало времени и сил.

Последствия заболевания

Последствия задержки речевого развития могут быть следующими:

  • отставание от сверстников в интеллектуальном и психическом развитии;
  • увеличение этой разницы с годами;
  • трудности при обучении в школе: нередко встаёт вопрос о переводе ребёнка в коррекционную (вспомогательную) школу.

Гораздо легче предупредить заболевание, чем вылечить его. Поэтому родителям нужно как можно больше общаться с ребёнком уже с внутриутробного развития. Разговаривайте с ним, слушайте его, интересуйтесь его внутренним миром - дети, растущие в любви и заботе, редко испытывают трудности с развитием речи.

ЕРЕВАН, 13 октября. Новости-Армения. Если людям дать возможность наблюдать в реальном времени, что происходит у них в мозгу, они быстро научатся снимать боль, улучшать себе настроение и распоряжаться невиданными умственными способностями. Доступ к этому методу может преобразить мир.

Как это работает

Загружается новость... "Лево"

Как сообщает BBC , у каждого из нас свой способ справляться с негативными чувствами и эмоциями. Кто-то фокусируется на дыхании, чтобы успокоить нервы. Кто-то применяет медитацию, чтобы избавиться от зубной боли. Кто-то, чтобы отогнать плохое настроение, пытается мысленно перенестись в те места, где когда-то чувствовал себя особенно хорошо…

Все эти способы так или иначе работают - правда, с разной степенью успеха. А теперь представьте, что вы видите всё, что происходит у вас в голове, в мозгу, когда вы чувствуете боль, тревогу, тоску, страх или удовольствие. И вы можете наблюдать за этим в реальном времени! Вы учитесь управлять своим умом - примерно так же, как бодибилдер тренирует отдельные группы мышц

Вдруг вам становится ясно, что ваши эмоции - никакая не тайна. Вы способны следить за тем, как работают те маленькие психологические хитрости, с помощью которых вы разгоняете тоску, можете выбирать наиболее эффективные приемы и контролировать их работу в режиме реального времени.

ФМРТ в реальном времени

Наверное, вы уже поняли, какая главная идея лежит за новой техникой, которую назвали "ФМРТ в реальном времени" (ФМРТ - функциональная магнитно-резонансная томография).

Мы учимся контролировать эмоции, чувства и желания, получая на экране визуальный отклик на наши действия, на то, как именно мы применяем психологические техники и уловки. В итоге это становится почти таким же простым, как убавить громкость в стереосистеме.

Это открывает нам путь в будущее, где с помощью "ФМРТ в реальном времени" мы сможем натренировать свои умственные способности до невиданной степени.
Сосредоточившись на контроле над виртуальным пламенем, люди способны уменьшить боль, которую испытывают.

Впервые этот метод был продемонстрирован в 2005 году во время исследования, в ходе которого людей обучали контролю над болевыми ощущениями.

Восьмерых добровольцев помещали в МРТ-сканер и создавали у них на коже ощущения, как от ожога. В это время им показывали на мониторе язычок пламени, олицетворяющий процесс в районе головного мозга, отвечающем за болевые реакции.

С помощью различных когнитивных приемов участники эксперимента быстро учились управлять размером пламени, что помогало им регулировать степень электрического раздражения болевой зоны у себя на коже.

Удивительно, но всего лишь за 13 минут эксперимента его участники достигали умения легко менять размер пламени и, соответственно, были способны более чем на 50% уменьшать боль.

Способности, приобретенные во время обучения, сохраняются и спустя 11 месяцев, что подтверждает долгоиграющий эффект тренинга

С тех пор количество подобных исследований с применением ФМРТ в реальном времени росло лавинообразно. О всё новых и новых методах клинического и экспериментального применения сообщается чуть ли не каждый месяц.

Наука не стоит на месте

Загружается новость... "Право"

Исследуемым теперь предлагается возможность оценить происходящее у себя в мозгу не только с помощью изображения, но и звуков, и даже температуры (через очки виртуальной реальности). Метод уже получил еще одно название - нейрофидбэк.

В исследовании 2017 г., результаты которого опубликованы в журнале Appetite, продемонстрировано, как с помощью ФМРТ в реальном времени можно бороться с ожирением.

В течение четырех дней мужчины с лишним весом учились контролировать те районы головного мозга, которые отвечают за ощущения исполнения и вознаграждения, приучая свой мозг делать выбор в пользу более здоровой пищи и меньшего ее количества.

В другом исследовании этого года обнаружено, что если научиться контролировать определенную часть префронтальной коры головного мозга (тот район, с которым связывают поведение пациентов с СДВГ, синдромом дефицита внимания с гиперактивностью), то прошедшие курс обучения подростки могут самостоятельно уменьшить симптомы СДВГ и развить навык сосредотачиваться.

Причем способности, приобретенные во время обучения, сохраняются и спустя 11 месяцев, что подтверждает долгоиграющий эффект тренинга и происшедших в связи с ним изменений в мозгу.

В исследовании 2016 г. было обнаружено, что пожилые люди могут использовать эту технику для улучшения своих познавательных способностей, притупленных возрастом. Таким же образом и молодые люди могут стимулировать работу своего мозга.

Исследование 2015 г., в котором участвовали здоровые взрослые люди, показало: обучение с помощью так называемого нейрофидбэка помогает улучшить способность сосредотачиваться и меньше отвлекаться.

В других недавних исследованиях было найдено применение этой методике в лечении депрессии, тревожных состояний, посттравматического стрессового расстройства у ветеранов военных действий и даже пристрастия к курению.

Исследование Джеймса Салзера из Техасского университета города Остин показало, что люди способны научиться регулировать уровень нейромедиаторного допамина, что может быть применено для лечения болезни Паркинсона.

Огромный мир новых возможностей

Насколько же велик потенциал обучения с помощью нейрофидбэка, если каждый из нас сможет полностью контролировать свой мозг?

В общем, исследования ясно демонстрируют, что эта технология может найти применение в миллионах случаев. Но насколько длительным будет ее эффект и насколько она практична? Точно сказать пока нельзя.

Для ФМРТ в реальном времени нужно дорогостоящее и громоздкое оборудование, которое сейчас применяется прежде всего в срочных и тяжелых случаях. Однако, как мы знаем, технологии не стоят на месте. Вполне возможно, очень скоро появятся более дешевые и более миниатюрные сканеры ФМРТ.

Если даже несколько 10-минутных занятий приносят статистически значимый результат, то что же будет после 10 тысяч часов тренировки?

И тогда перед человечеством откроется огромный мир новых возможностей.
Представьте себе атлета, который проводит тренировки, не видя собственного тела и не имея представления о весе штанги.

Примерно в таком же положении мы находимся сейчас, не видя, что происходит в нашем мозгу, когда нам больно, когда нам холодно, когда у нас плохое настроение, когда мы в отчаянии, когда мы плачем или радуемся...

Насколько же велик потенциал обучения с помощью ФМРТ в реальном времени? Чего мы достигнем, если каждый из нас сможет каждый день уделять время тренировкам сознания - и так месяцы и годы?

Метод "ФМРТ в реальном времени" может оказаться коротким путем к достижению, например, того, на что тратят годы упорной работы со своим умом тибетские монахи, высушивающие жаром своего тела мокрое полотенце на ледяном ветру, или индийские йоги, умеющие полностью блокировать ощущение боли в теле.

Конечно, пока ничего нельзя утверждать наверняка, но, вполне возможно, речь идет и о достижении умственных сверхспособностей. -0-