Главная · Запор · Онкология: выявление мутаций в генах BRCA1, BRCA2, CHEK2. Мутации рака легких Генная мутация и рак

Онкология: выявление мутаций в генах BRCA1, BRCA2, CHEK2. Мутации рака легких Генная мутация и рак

У многих людей, страдающих , появилась надежда на возврат к полноценной жизни и даже полное выздоровление. Применение на практике принципов персонализированной медицины позволило ведущим израильским онкологам перейти на качественно новую ступень лечения этого тяжёлого недуга. Персонализированная медицина базируется на строго индивидуальном подходе к разработке программы терапии для каждого больного, что предполагает такие мероприятия, как: изучение особенностей клеток обнаруженной опухоли; назначение лекарственных средств последнего поколения; экспериментальная проверка схемы лечения, вплоть до создания целевых препаратов для конкретного пациента.

Несмотря на неутешительные данные мировой статистики о том, что более чем у половины (53,4%) больных рак лёгких обнаруживают на поздних стадиях и их шанс на выздоровление равен всего лишь 3,4%, уверен: уровень выживаемости таких пациентов в ближайшее время можно увеличить до 20%. Это утверждение председателя Международной ассоциации рака лёгких, ведущего онколога-пульмонолога Герцлия Медикал Центр и клиники Бейлинсон базируются на анализе уже полученных результатов лечения больных с онкологическими патологиями лёгких.

Так, если два десятилетия тому назад после диагностики злокачественной опухоли лёгких на поздних стадиях развития средняя продолжительность жизни пациентов составляла около 4 месяцев, сейчас этот срок увеличился в 10 раз - 3,5 года. При этом и качество жизни больных значительно улучшилось. Одним из важных факторов такого успеха является применение на практике принципов персонализированной медицины при лечении онкологических патологий дыхательной системы.

Некоторые аспекты персонализированной терапии при раке лёгких

Для рака лёгких характерно агрессивное течение: новообразование может всего за месяц увеличиться вдвое, тогда как выраженная симптоматика появляется только на поздних стадиях. При этом еще в недавнем прошлом протоколы консервативного лечения различных видов этой патологии были идентичны, без учета гистологии и цитологии опухоли. На основе практического опыта израильские врачи пришли к выводу о необходимости разработки индивидуальных планов терапии в зависимости от цитологического типа раковых клеток, выявленных у конкретного больного.

Биомолекулярный анализ при онкологических заболеваниях лёгких

С целью точной дифференциации рака лёгких проводят бронхоскопию с забором биоптата для гистологического и цитологического исследований. После получения из лаборатории заключения о наличии мутагенеза и обнаруженном типе мутации клеток опухоли разрабатывается тактика медикаментозного лечения с назначением биологических препаратов. Благодаря использованию израильскими врачами биомолекулярного анализа и назначению по его результатам целевой терапии у многих пациентов с последней стадией рака лёгких продолжительность жизни превышает 3,5 года.

В настоящее время проведение таргетной терапии при онкологических патологиях лёгких актуально приблизительно для 30% пациентов. В эту группу входят те, у кого выявлены определенные виды мутагенеза, поддающиеся лечению уже созданными препаратами. Однако израильские онкологи под руководством продолжают изучение механизмов мутации и разработку новых лекарств, поэтому вполне вероятно, что уже скоро список показаний для назначения биологических препаратов будет расширен.

Биологическая (таргетная) терапия при злокачественных опухолях лёгких

Для биологической терапии используется лекарства двух видов, они различаются принципом действия на опухоль, но обладают одинаковым окончательным эффектом. Эти препараты блокируют механизм мутации клеток на молекулярном уровне, не оказывая негативного влияния на здоровые клетки, как это происходит при химиотерапии. Постоянное целевое воздействие только на клетки самой опухоли через 3-4 месяца приводит к прекращению злокачественного процесса. Для поддержания этого состояния прием биологических лекарств необходимо продолжать на протяжении всей жизни. Биологическое лечение назначется вместо традиционно применяемой при лечении рака легких химиотерапии и лучевой терапии и практически почти не имеет побочных эффектов.

Однако постепенно (в течение 1-2 лет) формируется невосприимчивость злокачественных клеток к действующим веществам препаратов таргетной терапии, в этом случае возникает необходимость в незамедлительной коррекции назначенного лечения. Основным методом наблюдения за течением опухолевого процесса является регулярное (через каждые 3 месяца) проведение компьютерной томографии. Если при очередном обследовании положительная динамика отсутствует, выполняют биопсию и, в зависимости от ее результатов, принимают решение о тактике дальнейшего лечения.

  • При обнаружении мутации гена EFGR (приблизительно 15% случаев) возможно проведение лечения одним из трех препаратов, прошедших лицензирование в американской организации FDA: «Иресса», «Тарцева», «Афатиниб». Эти лекарственные средства не обладают тяжёлыми побочными эффектами, выпускаются в виде таблеток или капсул для перорального приёма.
  • При наличии транслокации генов ALK/EML4 (от 4 до 7 процентов случаев) назначают лицензированное в Израиле лекарственное средство «Кризотиниб».
  • Для подавления опухолевого ангиогенеза применяют препарат «Авастин», который опосредованно влияет на этот процесс за счёт связывания белка VEGF. «Авастин» назначают совместно с химиотерапией, что существенно увеличивает её эффективность.

Индивидуальный выбор эффективной программы терапии при раке лёгких

При разработке схемы терапии злокачественной патологии у конкретного больного израильские специалисты ориентируются не только на результаты диагностических тестов, в частности гистологического и цитологического исследований опухолевых клеток. Они выбирают программу терапии и экспериментальным путем с использованием лабораторных животных. Фрагменты ткани, взятой из опухоли пациента, вживляют нескольким мышам, затем каждой из 5-6 заболевших особей проводят лечение по тому или иному плану с назначением как уже апробированных, так и новых препаратов, находящихся на стадии клинических испытаний. Для пациента используют терапевтическую программу, которая оказалась наиболее эффективной при лечении лабораторных мышей.

Новости по теме

Комментарии6

    Смотрю медицина и правда ступила в 21 век. Очень долго врачи консервативно лечили "по старинке" и ничего принципиально нового не изобреталось. Не знаю с чем это связано, говорят, что всё в мире циклично и может наступил новый цикл активного развития медицины, но действительно наблюдаю резкий рывок вперёд, особенно в области онкологии. Много новых совершенно препаратов стали разрабатывать, которые принципиально по новому лечат, много новых методов ранней диагностики. Я бы хотела застать то время, когда лечение рака будет простым и элементарным, как гриппа и люди будут вспоминать страшные методы хирургических удалений больных органов, как средневековые ужасы))

    Про биологическое лекарство от рака я слышала. Говорят очень эффективный метод. Но из статьи я так понимаю, что не каждому это лечение подходит и в итоге наступает привыкание организма к лекарству, то есть грубо говоря, через два года (исходя из статьи) надо возвращаться к старым испробованным химическим лекарствам. Интересно тогда знать, как организма больного и опухоль реагируют на химиотерапию "по старике" после лечения биологическими препаратами и как вообще происходит рецидив - постепенно или резко, бурно и агрессивно? Ведь от этого зависит насколько в принципе оправданно использование этих новых препаратов.

    Если следовать тому, что написано в статье, то получается, что "продолжительность жизни превышает 3,5 года" и "постепенно (в течение 1–2 лет) формируется невосприимчивость злокачественных клеток к действующим веществам". То есть продолжительность жизни увеличивается ровно насколько действует новое лекарство до момента привыкания к нему. От сюда я могу делать выводы, что в принципе это лекарство не излечивает и не уничтожает раковые клетки, оно только залечивает или удерживает рак от дальнейшего развития, но наступает точка возврата и лекарство уже не может удержать рак, после чего происходит обратное разворачивание событий. Личное ИМХО, что это хорошо, что нашли как продлить жизнь больным на 3.5 лет, но надо бы найти что-то, чтобы убивало сам рак, а не сдерживало его.

    Сергей, 3.5 года, это конечно, не 10-20 лет, но это шанс и это возможность. Сейчас медицина развивается очень быстро, каждый год находят десятки новых методов лечения и лекарственных препаратов. За эти 3.5 года может быть смогут усовершенствовать это лекарство, может смогут найти новое, ещё более лучшее. Это шанс выжить. Люди, у кого такое заболевание, борются за каждый день и рады каждой минуте жизни. Когда нет ей угрозы, мы не знаем насколько дорого она стоит. И не в деньгах, а в минутах жизни. А бороться надо, так как в этой борьбе находятся новые методы и я верю, что наступит тот момент, когда человечество полностью победи рак. Но на это надо время. А если мы думали, что лишний день не имеет значение, то наверное до сих пор и грипп бы не умели лечить.

    Лиха беда началом. Пусть пока что на три с хвостиком года увеличивается продолжительность жизни, а там гляди и до 5 лет смогут прожить, а там больше и больше. Главное, чтобы это была полноценная жзинь, а не продление мучений.

В этом обзоре я расскажу немного об онкогенетике - направлении генетики, изучающем причины и законы возникновения и функционирования опухоли. Тема очень сложная, большая по объему и данная статья не претендует на освещение всех вопросов этого направления. Я попыталась рассказать только об общих положениях, чтобы облегчить понимание частных процессов, о которых далее будут рассказывать мои коллеги.

Введение
Итак, с момента завершения программы «Геном человека» мы вступили в эру молекулярной медицины, которая, помимо всего прочего, подразумевает выяснение генной природы многих наследственных и многофакторных заболеваний, а так же различных патологических состояний, на первый взгляд с генетикой не связанных. Важной характеристикой молекулярной медицины является ее индивидуальный характер ипрофилактическая направленность , благодаря чему масштабные сведения о геноме могут быть получены задолго до начала заболевания, а профилактические мероприятия если и не полностью ликвидировать, то значительно снизить риски.

Причины возникновения рака
Конечно, онкология - одна из актуальных точек приложения этого направления медицины, потому как наряду с сердечно-сосудистыми заболеваниями, является ведущей причиной инвалидизации и смертности (около 20% от всех случаев). Практически каждая семья, так или иначе, сталкивается с этой проблемой. Каковы же современные представления об онкогенезе (причинах возникновения рака)?
Во-первых, рак - это не одно заболевание, это сложный многоступенчатый процесс, в основе которого находятся мутации и разбалансировка механизмов функционирования генома соматических клеток. Так что, по современным представлениям, рак - это генетическая болезнь (не будем забывать, что генетика - это не только изучение наследственности, но и изучение изменчивости генома в течении жизни). Существуют как семейные, так и спорадические формы рака.

Рак и наследственность
Семейные, или менделирующие, формы четко прослеживаются в родословной. К счастью, они занимают не более 5% от всех видов опухолей, однако часто сопровождаются ранним, агрессивным дебютом с вовлечением многих органов и тканей. Именно про такие случаи часто говорят: «унаследовал рак». Хочу подчеркнуть, однако, что здесь мы имеем дело не с наследованием болезни, как таковой, не с наследованием рака, а с наследованием мутации, которая значительно повышает вероятность возникновения определенного вида опухоли.

Что же такое мутация и почему она возникает?
Любое изменение в молекуле ДНК или структуре хромосом можно назвать мутацией (). Мутагенез (процесс появления мутаций) является инструментом эволюции, инструментом видообразования и идет постоянно, а так же является механизмом адаптации организмов к изменениям среды обитания.
Мутации часто возникают под влиянием различных условий внешней среды, к которым можно отнести естественное и искусственное ионизирующее излучение, различные химические вещества, в том числе употребляемые в пищу или принимаемые в виде фармацевтических препаратов и т. д. Такие вещества называются мутагены - т. е. провоцирующие возникновение мутаций. Почти все они (по-совместительству) еще и канцерогены - т. е провоцирующие возникновение мутаций, приводящих к развитию опухоли.
Одни мутации могут содержаться в геноме половых клеток (гамет) - это герминальные мутации. Тогда они наследуются и вызывают генетические болезни, проявление которых часто сопровождается тяжелыми пороками развития органов и систем.
Другие мутации возникают в соматических клетках (все клетки организма за исключением гамет) и потомству не передаются - это соматические мутации. Последствия соматических мутаций тоже могут быть очень разными: от тяжелых врожденных пороков развития, если мутация произошла на ранних этапах эмбриогенеза, до отсутствия какого-либо видимого эффекта. Однако, некоторые соматические мутации приводят к появлению новообразования - опухоли, злокачественной или доброкачественной. Опухоль - это скопление неконтролируемо делящихся клеток, способных (злокачественная) или не способных (доброкачественная) к прорастанию в соседние ткани и миграцию в отдаленные участки организма (метастазированию).

Почему мутации приводят к опухолям?
Дело в том, что все гены в организме выполняют определенную работу, некоторые из них контролируют процессы деления, роста и своевременную гибель клеток (апоптоз). Существует 2 типа регуляторов этих процессов: позитивные, способные индуцировать деление и негативные, препятствующие этому. В процессе эволюции были выработаны мощные механизмы поддержания равновесия между этими системами регуляции, нарушение его приводит к опухолевому росту.
К позитивным регуляторам можно отнести протоонкогены - это здоровые гены, они есть у всех и наиболее активны в эмбриональном периоде, т к именно в это время деление клеток должно находиться под очень строгим контролем. Протоонкогены кодируют важные белки, приносящие, принимающие и передающие сигналы извне (факторы роста и рецепторы клеточной поверхности), белки, которые «включают» гены (транскрипционные факторы) и другие белки, которые делают еще очень много полезной работы.
Мутация способна превратить протоонкоген в онкоген. Такие мутации проявляются уже при повреждении одной копии гена (в гетерозиготном состоянии) т.е. являются активизирующими и доминантными. Активация происходит 3-мя путями, которые можно условно обозначит, как:


  1. Мутировать. Если в результате мутации изменяется кодирующая последовательность гена, то он может начать синтезировать сверхактивный видоизмененный белок, что через цепочку реакций приведет к стимуляция деления клетки.

  2. Копировать. Если в результате мутации кодирующий участок гена амплифицируется (появляется много копий), то такой онкоген синтезирует нормальный белок, но в больших количествах.

  3. Перемещаться. Если в результате мутации ген перемещается в другое место генома и начинает активнее работать, стимулируемый новым окружением, то он синтезирует, либо нормальный белок в больших количествах, либо сверхактивный видоизмененный белок.

На сегодняшний день известно более 100 клеточных онкогенов.
Негативных регуляторов известно несколько больше. Они называются гены-супрессоры опухолевого роста (еще иногда их называют анти-онкогенами). Канцерогенный эффект этих генов проявляется только при полной инактивации их функции, т. е в гомозиготном состоянии. Следовательно, мутации в этих генах рецессивные. Эти гены имеют несколько отличительных характеристик, важнейшей из которых является то, что можно унаследовать одну мутантную копию гена-супрессора опухолевого роста и быть гетерозиготой по аллелям данного гена. Такие люди имеют повышенную наследственную предрасположенность к опухолям. Гены-супрессоры очень разнородны, условно их разделяют на группы:

  1. Хранители клеточного цикла (ХКЦ) - регулируют клеточный цикл. Самые известные гены этой группы RB1 (ген ретинобластомы) и TP53 («страж генома»)

  2. Гены-«дворники» - участвуют в репарации поломок ДНК. Мутации в обеих аллелях этих генов приводят к раку «косвенно», за счет накопления вторичных мутаций. К этой группе относятся BRCA1, BRCA2 (рак груди и яичников). Однако, злокачественная трансформация клетки- это сложный, многоступенчатый процесс, предполагающий накопление, как мутаций, так и других функциональных нарушений. На сегодняшний день используется «двухударная» модель канцерогенеза. Она предполагает, что для перехода нормальной клетки в опухолевую необходимо 2 последовательных события («удара»):


  • 1 Удар: мутация, повышающая риск опухолевой трансформации, которая может быть, как герминальной, так и соматической.

  • 2 Удар: соматическая мутация или утрата функции гена в результате химической инактивации (например, метилирования), т е из-за эпигенетических событий. Эпигенетическое подавление экспрессии (активности) генов это нормальный механизм «включения-выключения» генов, однако, случившись невовремя, расценивается как функциональная мутация.

Итак, если 2 «удара» по клетке были нанесены, начинается каскад мутаций с вовлечением все большего количества генов, образуется резервуар генетически нестабильных клеток, называемых раковыми стволовыми клетками, которые дают начало многочисленным опухолевым клонам.
Это очень общая модель, однако, она составляет основу для понимания механизмов болезни и для поиска путей лечения.

Мутация - не равно болезнь!
К счастью, мутации не обязательно приводят к патологии, многие из них никак себя не проявляют и называются нейтральными, «молчащими» или генетическим полиморфизмом. Т.е в большинстве случаев изменение гена не делает его хуже, а делает его другим. Простым примером, подтверждающим это, может служить тот факт, что разный цвет глаз, волос и кожи - это проявление мутаций в соответствующих генах. Однако, никому не приходит в голову объявлять голубоглазых или рыжеволосых больными.
Поэтому, надо четко понимать, что мутация и генетическое заболевание - это не одно и то же! Гены не для того, что бы вызывать заболевание!
Употребление термина «мутация» с четкой привязкой к патологическому процессу, уравнивание понятий «мутация-болезнь» - это чисто медицинский сленг, принятый для удобства сообщения и усвоения информации, потому как медицина занимается изучением болезней и поиском путей их лечения.
На сегодняшний день, например, благодаря накопленным знаниям, уже удалось создать препараты таргетной («прицельной») терапии для некоторых видов рака. Это препараты, которые направленно уничтожают мутантные, больные клетки, максимально бережно относясь к здоровым. Создание таких препаратов произвело революцию в лечении онкологических заболеваний, значительно увеличилась безрецидивная выживаемость и качество жизни больных людей. Именно систематизация накопленных знаний позволила успешно внедрять в клиническую практику методы ранней диагностики, которые способствуют как постановке диагноза, так и точному прогнозу и оптимизации терапии. Семимильными шагами развивающаяся онкофармакогеномика широко использует методы генетического тестирования для еще большей индивидуализации лечения. Так что в современном мире рак - это НЕ приговор. Читайте нас дальше и будьте здоровы!

Список литературы:


  1. «Наследственные болезни» Национальное руководство/ под ред. акад. РАМН НП Бочкова, акад. РАМН ЕК Гинтера, акад. РАМН ВП Пузырева, Москва, издательская группа «ГЭОТАР-Медиа» 2012г-936с.

  2. Медицинская генетика: учебное пособие/Роберт Л. Ньюссбаум, Родерик Р. Мак-Иннес, Хантингтон Ф. Виллард; пер. с англ. АШ Латыпова; под ред. НП Бочкова, Москва, издательская группа «ГЭОТАР-Медиа» 2010г-624с.

  3. Дэвид Кларк, Лонни Рассел «Молекулярная биология: простой и занимательный подход»/ пер. с англ., издание 2-е, Москва, ЗАО «Компания КОНД», 2004г-472с.

  4. Геномика-медицине. Научное издание/ под ред. акад. РАМН ВИ Иванова и акад. РАН ЛЛ Киселева, Москва, ИКЦ «Академкнига», 2005г-392с.

  5. Клаг Уильям С., Каммингс Майкл Р. «Основы генетики»/ пер. с англ. АА Лушниковой, СС мусаткина, Москва, ТЕХНОСФЕРА, 2007г-896с.

С развитием онкологии ученые научились находить слабые места у опухоли – мутации в геноме клеток опухоли .

Ген - это часть ДНК, которая была унаследована от родителей. Половину генетической информации ребенок получает от матери, половину от отца. В теле человека находятся более 20 000 генов, каждый из которых выполняет свою определенную и важную роль. Изменения в генах резко нарушают протекание важных процессов внутри клетки, работу рецепторов, выработку необходимых белков. Эти изменения называют мутациями.

Что значит мутация генов при раке? Это изменения в геноме или в рецепторах опухолевой клетки. Эти мутации помогают опухолевой клетке выживать в трудных условиях, быстрее размножаться и избегать гибели. Но существуют механизмы, с помощью которых мутации можно нарушить или заблокировать, вызвав этим гибель раковой клетки. Для того чтобы воздействовать на определенную мутацию, ученые создали новый вид противоопухолевой терапии под названием «Таргетная терапия» .

Препараты, применяемые при данном лечении, называются таргетными препаратами, от англ. target - мишень. Они блокируют мутации генов при раке , тем самым запуская процесс уничтожения раковой клетки. Для каждой локализации рака характерны свои мутации, а для каждого типа мутаций подходит только определенный таргетный препарат.

Именно поэтому современное лечение онкологических заболеваний построено на принципе глубокого типирования опухоли. Это значит, что перед тем как начать лечение, проводится молекулярно-генетическое исследование опухолевой ткани, позволяющее определить наличие мутаций и подобрать индивидуальную терапию, которая даст максимальный противоопухолевый эффект.

В этом разделе мы расскажем, какие бывают мутации генов при раке , зачем необходимо делать молекулярно-генетическое исследование, и какие препараты воздействуют на определенные мутации генов при раке .

В первую очередь, мутации делятся на естественные и искусственные . Естественные мутации возникают непроизвольно, а искусственные - при воздействии на организм различных мутагенных факторов риска .

Также существует классификация мутаций по наличию изменений в генах, хромосомах или во всем геноме . Соответственно, мутации делятся на:

1. Геномные мутации - это мутации клеток, в результате которых изменяется число хромосом, что ведет к возникновению изменений в геноме клетки.

2. Хромосомные мутации - это мутации, при которых происходит перестройка структуры отдельных хромосом, в результате чего наблюдаются потеря или удвоение части генетического материала хромосомы в клетке.

3. Генные мутации - это мутации, при которых идет изменение одной или нескольких различных частей гена в клетке.

МОСКВА, 19 окт - РИА Новости . Появления всего десяти "удачных" мутаций в ДНК большинства клеток хватает для того, чтобы они "взбунтовались" и породили злокачественную раковую опухоль, говорится в статье, опубликованной в журнале Cell .

"Мы решили один из самых старых вопросов, касающихся рака - сколько мутаций должно появиться в ДНК, чтобы нормальная клетка превратилась в раковую. Как оказалось, их число является крайне небольшим. К примеру, типичные клетки рака печени содержат в себе около 4 мутаций, а клетки прямой кишки порождают рак примерно через 10 "опечаток" в ДНК", — заявил Питер Кемпбелл (Peter Campbell) из Института Сангера (Великобритания).

Рак считается сегодня одной из главных причин смерти человека в развитых странах, и его главной особенностью можно назвать то, что частота его развития заметно вырастает в пожилые годы. Как предполагают ученые, это связано с двумя вещами - ухудшением способности организма "чинить" разрывы в ДНК при наступлении старости и накоплением числа потенциально опасных, но не фатальных мутаций в геноме.

Ученые достаточно давно пытаются использовать обе эти закономерности для предсказания вероятности развития рака у того или иного человека, однако пока такие прогнозы или вообще не работают, или отличаются крайне низкой точностью.

Британские генетики впервые подсчитали, как много мутаций требуется для зарождения большинства самых распространенных разновидностей рака, изучив геномы примерно 7600 раковых опухолей, извлеченных из тела пациентов британских клиник.

Ученые объяснили, почему рыжеволосые люди чаще страдают от рака кожи Ученые определили возможный молекулярный механизм, отвечающий за большую уязвимость людей с мутациями в гене MC1R для солнечных лучей, по сравнению с более темнокожими людьми.

Развитие рака, как объясняют ученые, идет по тем же Дарвиновским законам, как и эволюция всех остальных форм жизни - благоприятные мутации, способствующие выживанию раковых клеток, постепенно накапливаются в организме, а неудачные их версии приводят к гибели их носителей и их исчезновению из своеобразного ракового "генофонда".

Анализируя и сравнивая ДНК раковых клеток, извлеченных из опухолей одного и того же типа, но принадлежащих при этом разным людям, Кемпбелл и его коллеги надеялись найти подобные "удачные" мутации и понять, какое минимальное их количество необходимо для развития рака, и как долго они могут "выживать" в теле человека.

Этот анализ раскрыл две любопытных вещи, которые не ожидали увидеть биологи. Во-первых, оказалось, что "удачные" мутации могут существовать в клетках очень долгое время и не привлекать внимания систем самозащиты организма, что способствует их накоплению и развитию рака даже в том случае, если мутации появляются в той или иной ткани тела достаточно редко.

Во-вторых, число подобных "опечаток" в ДНК, необходимых для развития рака, оказалось крайне небольшим - в некоторых органах рак может возникнуть даже после одной подобной мутации, а в других - через 3-4 или 10 изменений в структуре ряда ключевых генов.

Что еще интереснее, примерно половина подобных "удачных" мутаций находилась в генах, которые раньше никак не связывались с развитием рака, и были неизвестны ученым, занимающимися изучением злокачественных опухолей. Их изучение, как надеются генетики, поможет нам лучше оценивать вероятность развития рака, а также поможет понять, как накопление мутаций может быть связано со старением тела.

В нашей сегодняшней статье:

Несмотря на миллиарды часов и долларов, потраченных на поиск лекарства от рака, цель до сих пор не достигнута. Происходит так во многом потому, что каждая опухоль имеет различные мутационные профили и, следовательно, по-разному реагирует на лечение.

Стоит отметить. В нашей стране рак лечат не так интенсивно, как например в Германии. Европейские страны довольно далеко продвинулись в лечении онкологических заболеваний. Если взять за пример одно из нередких заболеваний мужской половины населения, то около 20% среди других онкологических заболеваний у мужчин занимает рак простаты. Лечение рака простаты в Германии более эффективно чем в России, это связано с гораздо большим финансированием и огромным опытом работы в изучении, а главное в лечении онкологии. Но сегодня мы поговорим не о раке простаты, а о мутациях генов в двенадцати основных типах рака. И так, поехали.

Консорциум Cancer Genome Atlas был создан для использования секвенирования ДНК и обнаружения самых распространенных и значимых мутаций рака. В идеале этот проект раскроет новые диагностические маркеры и поможет найти эффективные лекарственные препараты, могущие повлечь за собой появление достичь по-настоящему индивидуальной медицины. В статье медики описывают анализ 3281 опухолей двенадцати типов рака, считая рак молочной железы, лёгких, толстой кишки и яичников, а также острый миелоидный лейкоз.

Они проанализировали 617354 мутаций и обнаружили 127 значительно мутировавших генов. Многие из этих мутаций произошли в генах, которые играют роль в процессе зарождения или прогрессирования рака, кодируют белки, предотвращающие повреждения ДНК и те, которые активируют реакцию клетки на различные факторы роста. Другие гены до настоящего времени не рассматривались как жизненно важные для процесса канцерогенеза. Они включали факторы транскрипции, факторы сплайсинга РНК и модификаторы гистонов - белков, ответственных за поддержку структурной целостности ДНК.

93% проанализированных опухолей имели, по крайней мере, одну мутацию хотя бы в одном из 127 генов, но ни одна не имела более шести. Авторы делают вывод, что число связанных с раком генов (127) и число мутаций необходимых для онкогенеза (1-6) является довольно небольшим. Однако исследовались только нуклеотидные замены, не обращая внимания на большие хромосомные перестроения.

Наиболее часто мутировавшими генами оказались p53. Мутации в p53 были обнаружены в 42% образцов, это самый часто мутировавший ген в пяти типах рака. р53 сканирует ДНК по длине, ища повреждения и активируя надлежащие механизмы ремонта в случае их нахождения.

Давней загадкой при исследовании рака было то, почему мутации в определенном гене вызывают рак в конкретном типе ткани, а не в другом. Некоторые из наиболее интересных результатов относятся как раз к группировке различных мутаций. Например, определены пять различных кластеров рака молочной железы, каждый из которых активируется мутациями в различных генах. В 69,8% случаев плоскоклеточного рака головы и шеи был обнаружен мутировавший ген р53, а так же в 94,6% случаев рака яичников и один в одном из кластеров рака молочной железы.

Хотя эти типы опухолей могли первоначально быть различными, возможно, лежащее в их основе генетическое сходство означает, что они будут поддаваться одинаковой терапии. Мутации в двух хорошо изученных генах рака, APC и KRAS, были обнаружены почти исключительно в толстой кишке и при раке прямой кишки. При раке лёгких кластеры не были идентифицированы; в целом у опухолей были мутации во многих из 127 генов.

Мутации в четырнадцати генах оказались эксклюзивными для некоторых видов рака, и 148 пар генов постоянно встречались вместе. Высокий уровень изменчивости мутировавших генов означал, что ген мутировал с самого начала туморогенеза. Более низкий уровень изменчивости показывает, что ген играл роль в прогрессировании, а не в формировании опухоли.

Авторы отмечают, что анализ данных этого и подобных исследований может дать «разумные шансы на выявление «основных» генов рака и специфических для разных типов генов опухолей в ближайшее время». Будем надеяться, что общие терапевтические стратегии могут быть применены к генетически сходным опухолям, даже если они возникают в различных тканях.