Главная · Болезни кишечника · Усвоение белков, жиров, углеводов. Гликемическая нагрузка. Переваривание и всасывание углеводов При переваривании углеводов происходят следующие процессы

Усвоение белков, жиров, углеводов. Гликемическая нагрузка. Переваривание и всасывание углеводов При переваривании углеводов происходят следующие процессы

Углеводы, наряду с белками и липидами, являются важ­нейшими компонентами клеток живых организмов. В них они выполняют весьма разнообразные и важные функции: энергетическую (служат источником макроэргических со­единений и тепла), защитную (полисахариды входят в сос­тав клеточных мембран, антител), структурную (участвуют в образовании тканевых, клеточных и субклеточных струк­тур), используются для биосинтеза нуклеиновых кислот (рибоза и дезоксирибоза), липидов, белков и многих других би­ологически важных соединений.

Источником углеводов организма служат углеводы пищи, основным из которых является крахмал. Крахмал (полисахарид) - это основная форма депонирования углеводов растениями, образуется в них в результате фотосинтеза. Гликоген – форма депонирования углеводов в тканях животных. Лактоза (дисахарид) содержится в молоке, это основной углевод в питании грудных детей. В меде и фруктах содержатся моносахариды глюкоза и фруктоза. Норма углеводов в питании составляет 400-500 г.

Гликопротеины состоят из апопротеина и углеводной части, которая редко превышает 30% (глюкоза, манноза, галактоза, фукоза, их аминопроизводные, нейраминовая и сиаловая кислоты). К гликопротеинам относят большую часть белков, секретируемых клеткой, а также белков плазмы крови (церулоплазмин, гаптоглобин, трансферрин, белки свертывания крови, иммуноглобулины и т. д). К классу гликопротеинов относят почти все белки внешней мембраны клетки. Они обеспечивают «узнавание» клеток, специфичность их контактов и адгезивные свойства. Протеогликаны. В этом семействе сложных белков на долю полисахаридов, представленных гликозаминогликанами (мукополисахаридами), приходится более 95% от всей массы молекулы. Протеогликаны присутствуют в межклеточном веществе тканей и служат «цементом», который скрепляет все клетки в единое целое - орган. Много их содержится в составе хрящей и сухожилий, в составе синовиальной жидкости, где они выполняют функцию смазки трущихся поверхностей суставов. К протеогликанам относится также гепарин (антикоагулянт).

Гидролиз (переваривание) крахмала и гликогена начи­нается в ротовой полости под влиянием амилазы слюны. Из­вестны α,β,γ - формы амилазы слюны. Первая (α-амилаза) гидролизует внутренние связи в молекуле полисахаридов, обра­зуя олигосахара. Вторая (β -амилаза), отщепляет с конца полисахарндной цепи молекулы мальтозы; γ -амилаза от­щепляет от полисахарида молекулы глюкозы. Оптимум рН действия всех названных амилаз лежит в пределах 6,8-7,0. В желудке, где сильно кислая реакция среды (рН 1,5-2,5), названные ферменты неактивны, и углеводы в нем не пере­вариваются. Лишь внутри пищевого комка амилаза слюны продолжает действовать. В 12-перстной кишке углеводы начинают ин­тенсивно расщепляться, т. к. в этом отрезке кишечника зна­чение рН среды нейтральное или даже слабо щелочное, и сюда дополнительно поступает α-амилаза поджелудочной железы. Гликозидные связи, находящиеся в точках ветвле­ния гликогена и амилопектина (1-6 связи) гидролизуются; амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой.

Если от гликогена в желудочно-кишечном тракте отщеп­ляется мальтоза, то она под влиянием мальтазы расщепля­ется на 2 молекулы глюкозы .

Лактоза молока расщепляется под влиянием лактазы на глюкозу и галактозу .

Если с пищей попадает сахароза, то она под влиянием сахаразы расщепляется на молекулы фруктозы и глюкозы.

В конечном итоге все поступившие с пищей поли-, олиго- и дисахара гидролизуются (переварива­ются) до моносахаров- преимущественно до глюкозы, фруктозы и галактозы. Далее все они при активном участии АТФ, ионов натрия, ферментов и других молекул переносят­ся из просвета кишечника в клетки слизистой оболочки (облегченная диффузия, симпорт).

Углеводы, которые не перевариваются в ЖКТ: клетчатка, пектины, лигнины. В ЖКТ нет ферментов, гидролизующих β-1-4-гликозидную связь. Биологическая роль клетчатки (целлюлозы): среда бактериальной флоры, стимулирует перистальтику кишечника, является основой фекалиев и адсорбентом различных токсинов.

Судьба всосавшихся моносахаров различна. Полагают, что более 90% их попадает в печень и там превращает­ся в гликоген. В состав гликогена может включаться толь­ко глюкоза, а фруктоза и галактоза-нет. В связи с этим, по­следние в цитоплазме клеток кишечника изомеризуются и превращаются в глюкозу.

Пути, по которым начнутся дальнейшие превращения этих молекул, многочисленны: это аэробное и анаэробное окисление, использование их для био­синтеза заменимых аминокислот, гликозамигликанов, рибозы и дезоксирибозы, высших жирных кислот, гли­когена; а также многих других важных для организма веществ.

Гликоген - основной резервный полисахарид в клетках животных. Остатки глюкозы соединены в линейных участках α-1-4-гликозидными связями, в местах разветвления α-1-6- гликозидными связями. Гликоген депонируется главным образом в печени и скелетных мышцах. Гликоген синтезируется в период пищеварения (1-2 часа после приема углеводной пищи). Синтез гликогена идет с затратой энергии, сопряженной с расходованием АТФ и УТФ. Синтез гликогена стимулирует гормон инсулин.

Мобилизация гликогена происходит в период между приемами пищи, во время физической нагрузки и при стрессе. Этот процесс происходит в результате каскадного механизма активации фермента фосфорилазы b под действием гормона адреналина и глюкагона. Гликоген печени освобождает глюкозу в кровь, т.к., в отличие от мышц, в печени функционирует фермент глюкозо-6-фосфатаза. Глюкозо-6-фосфат мышц используется для получения энергии.

Биосинтез гликогена происходит после приема пищи, в условиях повышенной концентрации глюкозы в крови с целью ее депонирования. Особой интенсивностью этого процесса отличаются печень и мышцы. Регуляторным ферментом является гликогенсинтетаза, активность которой повышается под действием инсулина.

Взаимопревращения сахаров - это процесс трансформации фруктозы и галактозы в глюкозу или ее производные. Существует несколько вариантов преобразования фруктозы и галактозы в глюкозу в зависимости от типа ткани и возраста.

Пути метаболизма и использования глюкозы в организме у человека многочисленны. Направления, по которым будет катаболизироваться глюкоза, зависят от вида клеток (анаэробы, аэробы или факультативные клетки), условий их существования в окружающей среде, а также от потребностей органов и тканей в различных соединениях, способных синтезироваться из углеводов.

У человека глюкоза катаболизируется преимущественно в аэробных условиях, т. е. при наличии в клетке кислорода. Путь окисле­ния углеводов в аэробных условиях более выгоден с энер­гетической точки зрения, так как каждый моль глюкозы при этом обеспечивает образование приблизительно 686 ккалорий. При катаболизме того же количества глюкозы по ана­эробному пути освобождается всего 47 ккалорий. Однако, анаэробный путь превращения глюкозы крайне важен для организма человека. При недостатке кислорода большинство органов и тканей функционирует некоторое время лишь бла­годаря усилению скорости анаэробного гликолиза. Некоторые ткани находятся в наибольшей зависимости от катаболизма глюкозы, как источника энергии (например, клетки мозга). Недостаточное снабжение мозга глюкозой или гипоксия проявляются головокружением, судорогами, потерей сознания.

Главное условие усвоения углеводов в организме - их растворимость. Этим качеством обладают моносахариды. Поэтому процесс переваривания углеводов в ЖКТ сводится к расщеплению высокомолекулярных углеводов до моносахаридов.

1. Полость рта. Под действием фермента амилазы полисахариды частично расщепляются до декстринов.

2. Желудок. Переваривание углеводов не происходит из-за кислой среды в желудке.

3. Тонкий кишечник. Много ферментов, среда слабощелочная pH 7,8-8,2 обеспечивает оптимальную активность ферментов. Здесь происходит полное переваривание углеводов. Под действием амилазы крахмал расщепляется до декстринов, а затем до мальтозы. Ферментами дисахаризадами дисахариды расщепляются до моносахаридов. Сахароза: на глюкозу и фруктозу. Мальтоза: на две молекулы глюкозы. Лактоза: на глюкозу и галактозу. Моносахариды всасываются через стенку тонкого кишечника в кровь. Из углеводов только клетчатка не гидролизуется из за отсутствия ферментов, а поступает в толстый кишечник.

4. Толстый кишечник. Клетчатка под действием фермента бета-глюкозидазы, выделяемой микробами, распадается. Часть ее используется для жизнедеятельности самих микроорганизмов, другая часть участвует в образовании кала и выводится из организма. Биологическое значение клетчатки: создает объем пищи, усиливает перистальтику кишечника, очищает ворсинки тонкого кишечника.

5. Печень. В печень моносахариды поступают по воротной вене. В печени галактоза и фруктоза и другие моносахариды преобразуются в глюкозу. В крови находится только глюкоза. В печени происходит: синтез гликогена и его отложение, при необходимости распад гликогена до глюкозы; образование глюкозы из неуглеводных компонентов (молочной кислоты, глицерина и некоторых аминокислот). Этот процесс называется глюконеогенезом. Оставшаяся глюкоза поступает в большой круг кровообращения и доставляется к тканям и органам. Поступление глюкозы происходит при участии гормона инсулина (кроме клеток мозга). На поверхности всех клеток (кроме клеток мозга) имеются белки рецепторы для взаимодействия с инсулином. К клеткам мозга глюкоза поступает путем простой диффузии. Внутриклеточно в митохондриях происходит расщепление глюкозы до углекислого газа и воды с накоплением энергии в виде молекул АТФ. У здорового человека в норме в крови содержится 3,33-5,55 ммоль/л глюкозы. В моче глюкоза отсутствует, как при ее образовании глюкоза реабсорбируется.

Потребности клеток в глюкозе различаются. Миоциты максимально используют глюкозу во время физической работы, а во время сна, их потребность минимальна. Большинство клеток способно запасать глюкозу в ограниченных количествах, кроме трех типов клеток, служащих депо глюкозы: гепатоциты, миоциты и адипоциты. Они захватывают глюкозу из крови при высоком ее содержании. В случае снижения уровня глюкозы в крови, она высвобождается из депо. Клети печени и миоциты запасают глюкозу в виде гликогена. Процесс его синтеза называется гликогенезом. Обратный процесс называется гликогенолизом. Адипоциты запасают глюкозу в виде глицерина, включенного в состав триглецеридов. Они распадаются только после исчерпания запасов гликогена. Головной мозг не способен депонировать глюкозу, поэтому зависит от ее поступления в кровь (минимальный уровень 3ммоль/л).

Потребность в углеводах взрослого организма составляет 350-400 г в сутки, при этом целлюлозы и других пищевых волокон должно быть не менее 30-40 г.

С пищей в основном поступают крахмал, гликоген, целлюлоза, сахароза, лактоза, мальтоза, глюкоза и фруктоза, рибоза.

Переваривание углеводов в желудочно-кишечном тракте

Ротовая полость

Со слюной сюда поступает кальций-содержащий фермент α-амилаза . Оптимум ее рН 7,1-7,2, активируется ионами Cl – . Являясь эндоамилазой , она беспорядочно расщепляет внутренние α1,4-гликозидные связи и не влияет на другие типы связей.

В ротовой полости крахмал и гликоген способны расщепляться α-амилазой до декстринов – разветвленных (с α1,4- и α1,6-связями) и неразветвленных (с α1,4-связями) олигосахаридов. Дисахариды ничем не гидролизуются.

Желудок

Из-за низкой рН амилаза инактивируется, хотя некоторое время расщепление углеводов продолжается внутри пищевого комка.

Кишечник

В полости тонкого кишечника работает панкреатическая α-амилаза , гидролизующая в крахмале и гликогене внутренние α1,4-связи с образованием мальтозы, мальтотриозы и декстринов.

Дорогие студенты, доктора и коллеги.
Что касается переваривания гомополисахаридов (крахмала, гликогена) в ЖКТ...
В моих лекциях (pdf -формат) написано о трех ферментах, выделяемых с панкреатическим соком: α-амилаза, олиго-α-1,6-глюкозидаза, изомальтаза.
ОДНАКО , при перепроверке обнаружилось, что ни в одной попавшейся мне (ноябрь 2019г) публикации в англоязычном инете нет упоминания о панкреатических олиго-α- 1,6-глюкозидазе и изомальтазе . В то же время в рунете такие упоминания встречаются регулярно, хотя и с расхождением - то ли это панкреатические ферменты, то ли находятся на стенке кишечника.
Таким образом, налицо недостаточно подтвержденные данные или перепутанные или вообще ошибочные. Поэтому пока я убираю с сайта упоминание о данных ферментах, и постараюсь уточнить информацию.

Кроме полостного, имеется еще и пристеночное пищеварение, которое осуществляют:

  • сахаразо-изомальтазный комплекс (рабочее название сахараза ) – в тощей кишке гидролизует α1,2-, α1,4-, α1,6-гликозидные связи, расщепляет сахарозу, мальтозу, мальтотриозу, изомальтозу,
  • β-гликозидазный комплекс (рабочее название лактаза ) – гидролизует β1,4-гликозидные связи в лактозе между галактозой и глюкозой. У детей активность лактазы очень высока уже до рождения и сохраняется на высоком уровне до 5-7 лет, после чего снижается,
  • гликоамилазный комплекс – находится в нижних отделах тонкого кишечника, расщепляет α1,4-гликозидные связи и отщепляет концевые остатки глюкозы в олигосахаридах с восстанавливающего конца.

Роль целлюлозы в пищеварении

Целлюлоза ферментами человека не переваривается, т.к. не образуются соответствующие ферменты. Но в толстом кишечнике под действием ферментов микрофлоры некоторая часть ее может гидролизоваться с образованием целлобиозы и глюкозы. Глюкоза частично используется самой микрофлорой и окисляется до органических кислот (масляной, молочной), которые стимулируют перистальтику кишечника. Малая часть глюкозы может всасываться в кровь.

Рыбы, как и высшие позвоночные, не способны к первичному биосинтезу углеводов, поэтому главным источником углеводов для них является пища, в первую очередь растительного происхождения.

В питании мирных рыб углеводы растительных кормов являются основным источником энергии, при их недостатке организм вынужден использовать значительную часть белка корма на покрытие энергетических потребностей, что снижает эффективность использования кормов и ведет к снижению уровня продуктивности.

Углеводы делят на три класса: моносахариды, олигосахариды, полисахариды. В кормах из моносахаридов в основном встречаются гексозы и пентозы (глюкоза, фруктоза, манноза, галактоза, рибоза, арабиноза). Олигосахариды чаще представлены мальтозой, сахарозой, трегалозой и целлобиозой как продуктом промежуточного превращения клетчатки. Полисахариды пищи можно разделить на две группы: структурные и универсальные пищевые. Структурные полисахариды обычно не перевариваются позвоночными или перевариваются с помощью кишечной микрофлоры. К ним относят целлюлозу, лигнин, пентозаны, маннаны. Универсальные пищевые полисахариды представлены гликогеном и крахмалом.

Животные и рыбы усваивают углеводы только в виде моносахаридов, поэтому олигосахариды и полисахариды в пищеварительном тракте подвергаются ферментативному гидролизу до моносахаридов. Усвоение углеводов рыбами происходит примерно на 50-60% и зависит от сложности их структуры. Например, у форели углеводы усваиваются на 40%, в том числе глюкоза - на 100%, мальтоза - на 90%, сахароза - на 70%, лактоза - на 60%, сырой крахмал - на 40%, варе-ный - на 60%.

У человека и высших животных переваривание углеводов начинается уже в ротовой полости, где пища подвергается механической (пережевывание) и химической обработке под действием довольно активных ферментов слюны - амилазы и мальтазы.

У рыб отсутствуют слюнные железы. У некоторых видов рыб имеются глоточные зубы и небная пластина, с помощью которых корм частично перетирается и смачивается слизью, выделяемой слизистой глотки и пищевода. В составе слизи обнаруживаются амилаза и мальтаза. У хищных рыб эти ферменты малоактивны и не играют существенной роли в пищеварении. у безжелудочных рыб, таких как карп, амилаза и мальтаза достаточно активно участвуют в предварительной обработке пищи. Заглатываемая пища через короткий пищевод попадает в желудок, у безжелудочных рыб - в передний, несколько расширенный отдел кишечника.

Переваривание углеводов в желудке. У теплокровных из-за отсутствия или низкой активности амилолитических ферментов в желудочном соке пищеварение углеводов в желудке практически отсутствует. У рыб (угорь, судак, ставрида, радужная форель, желтохвостик) в желудочном соке обнаружены ферменты класса гидролаз, подкласса гликозидаз - амилаза, хитиназа, лизоцим, гиалуронидаза, осуществляющие гидролиз гликозидных связей.

Большинство гликозидаз проявляют максимальную активность при рН 6,0-7,5. Кислая реакция желудочного сока (рН 0,8-4,0) практически не позволяет проявлять активность амилазе и гиалуронидазе, сохраняя возможность участия в пищеварении хитиназе и лизоциму.

Хитиназа (рН оптимум 4,6-4,0) расщепляет хитин до дисахарида хитобиозы и частично до его структурного мономера N-ацетил-глюкозамина:

СН2ОН CH2OH СН2ОН

хитиназа

ОН Н О OH Н O ОН Н nH2O

молекула хитина

СН2-ОН CH2-OH СН2-ОН

m ОН Н О OH Н + х ОН Н

ОН OH ОН ОН

Н NH-CO-CH3 Н NH-CO-CH3 n Н NH-CO-CH3

хитобиоза N-ацилглюкозамин

Хитин - представитель мукополисахаридов, является главной составной частью покровных тканей членистоногих, где он находится в комплексе с белками и минеральными солями. Роль хитиназы заключается в гидролизе гликозидных связей хитина, что способствует разрушению эндоскелета членистоногих. Осуществляя эту работу, хитиназа способствует процессам мацерирования (лишение структуры, разжижение) механически не обработанной пищи, и тем самым делает ее легко доступной для действия других ферментов. Активность хитиназы невелика и полного усвоения покровных тканей насекомых, ракообразных, оболочек яиц артемий не происходит. Образующиеся продукты гидролиза хитина не представляют для организма высокой пищевой ценности и практически полностью выводятся из организма.

В желудочном соке обнаружен высокоактивный лизоцим-фермент, расщепляющий муромовую кислоту, входящую в полисахаридные оболочки многих микроорганизмов, до N-ацетилглюкозамина. Разрушая клеточные оболочки микроорганизмов, лизоцим способствует проникновению других пищеварительных ферментов внутрь клетки, что важно для рыб, питающихся зоопланктоном.

Присутствующая в желудочном соке соляная кислота способствует набуханию и ослизнению оболочек растительных клеток и тем самым готовит углеводную часть пищи к дальнейшему ферментативному гидролизу.

Переваривание углеводов в кишечнике. Углеводы корма практически без изменений переходят из желудка в тонкий отдел кишечника. У безжелудочных рыб углеводы пищи через короткий пищевод сразу попадают в кишечник. В просвет кишечника изливаются кишечный и панкреатический соки, в составе которых обнаруживают до 22 ферментов, участвующих в переваривании белков, липидов, углеводов. У рыб кишечный сок выделяется эпителиоцитами слизистой оболочки всех отделов кишечника. Плотная часть кишечного сока представлена в основном отторгнутыми эпителиальными клетками, которые содержат основную массу пищеварительных ферментов и служат источником эндогенного питания, компенсируя недостаточное поступление с пищей органических веществ. Жидкая часть кишечного сока (вода и электролиты) способствует разжижению содержимого кишечника и созданию щелочной среды, наиболее оптимальной для ферментов кишечного сока и поджелудочной железы.

У рыб основное переваривание пищевых веществ, в том числе и углеводов, происходит за счет ферментов, выделяемых панкреатической железой. Панкреатическая железа может не иметь строгой локализации и выделять сок через самостоятельный проток или совместно с желчью. Это бесцветная слабощелочная жидкость (рН 7,3-8,7). Ферменты кишечного и панкреатического соков проявляют максимальную активность в пределах рН 6,0-7,5. у желудочных рыб рН кишечного содержимого составляет 6,4-7,3, у безжелудочных - 7,0-8,6. Необходимые значения реакции среды достигаются наличием в выделяемых соках бикарбонатов и слизи кишечного канала. Ферменты, участвующие в гидролизе углеводов, представлены глюкозидазами (карбогидразами), основными из которых являются амилазы (-, -, - амилазы), мальтаза, сахараза, трегалаза, фосфотаза. у некоторых рыб обнаружена в незначительном количестве лактаза.

Гидролиз полисахаридов гликогена и крахмала протекает при участии четырех видов амилаз: -амилазы, -амилазы, -амилазы и глюкоамилазы; - и -амилазы осуществляют гидролиз крахмала и гликогена преимущественно по (1-4) - связи до дисахарида мальтозы, глюкоамилаза по (1-6) - связи до глюкозы, -амилаза (собственно кишечный фермент) последовательно отщепляет остатки глюкозы с концов олиго- и полисахаридов. В результате действия амилаз образуются промежуточные продукты гидролиза крахмала - декстрины (С6Н10О5)х. В зависимости от величины остатков амилозных цепей выделяют амило-, эритро- ахро- и мальтодекстрины. При образовании последних включается в работу фермент мальтаза и гидролизует мальтозу до двух молекул -D-глюкозы. По такой же схеме протекает гидролиз гликогена:

Схема гидролиза крахмала (гликогена)

СН2ОН CH2OH СН2ОН

Н Н Н Н Н Н Н Н

ОН Н OH Н ОН Н + n H2O

H ОН H OH n H OH

фрагмент молекулы крахмала (гликогена) (С6Н10О5)n

СН2ОН CH2OH СН2ОН

амилазы Н Н Н Н мальтаза

ОН Н +хН2О ОН Н О Н Н Н2О

H ОН х H OH OH OH

декстрины (амило-, эритро-, мальтоза

ахро-, мальтодекстрины)

D-глюкоза

В кишечнике рыб обнаружены олигазы: сахараза (инвертаза), лактаза (галактозидаза) и трегалаза. В пищеварении рыб сахараза и лактаза не играют такой роли, как у теплокровных, их немного и они мало- активны. У карповых сахараза не обнаружена. Расщепление сахарозы может осуществляться более активной мальтазой (-гликозидазой).

Разрыв гликозидазной связи при участии мальтазы идет со стороны остатка -глюкозы, сахараза осуществляет разрыв со стороны

Фруктозы:

Схема гидролиза сахарозы

СН2ОН СН2ОН Н

Н сахараза

ОН О СН2ОН (мальтаза)

Н ОН ОН Н +Н2О

СН2ОН СН2ОН Н

ОН Н + Н ОН

ОН ОН ОН СН2ОН

D-глюкоза,D-фруктоза

Из олигаз наиболее активна трегалаза, расщепляющая дисахарид трегалазу:

Схема гидролиза трегалозы

CH2OH СН2ОН СН2-ОН

Н Н Н Н трегалаза Н Н

ОН Н ОН Н ОН Н

ОН ОН ОН ОН

Н ОН Н ОН Н ОН

трегалоза,D-глюкоза

В некоторых видах водорослей содержание трегалозы может достигать 10-15% от сухого вещества.

У растительноядных рыб количество и активность амилолитических ферментов выше, чем у хищных. Например, у карпа амилаза в 1000 раз более активна, чем у щуки. Рыбы сильно различаются между собой по гликолитической активности кишечника, т. е. по количеству выделяемых пищеварительными железами амилазы и глюкозидаз. Полисахариды хорошо перевариваются такими растительноядными рыбами, как толстолобик, амур, тиляпия. Карпы усваивают крахмал значительно хуже. Их пища не должна содержать более 15-20% крахмала. При избыточном содержании его в пищевом рационе наблюдается расстройство пищеварения и в результате резко замедляется рост рыбы. Использование длительных протеиновых диет у растительноядных рыб изменяет реакцию среды кишечного содержимого в кислую сторону и тем самым снижает активность амилолитических ферментов, повышая активность протеолитических ферментов. Одновременно происходит снижение доли амилолитических ферментов в пищеварительных соках.

Всасывание углеводов. У рыб основное всасывание пищевых веществ происходит в кишечнике.

В настоящее время достоверно доказано, что заключительная стадия гидролиза пищевых биополимеров происходит на поверхности мембраны микроворсинок (мембранное пищеварение) и осуществляется экзогидролазами, расщепляющими более мелкие молекулы олигосахаридов, дисахаридов до моносахаридов - продуктов для транспорта и всасывания. Образовавшиеся моносахариды без рассеивания в водной среде всасываются в слизистую кишечника.

Всасывание может осуществляться несколькими путями: посредством диффузионного, конвекционного (осмотического) потока, специфического (пассивного или активного) транспорта, путем пиноцитоза.

Пиноцитоз у взрослых организмов не играет практически никакой роли, так как разрешающий радиус мембран (0,4-0,6 нм) не позволяет проникать крупным молекулам внутрь клеток слизистой оболочки.

Диффузионный путь должен быть симметричным, т. е. при одинаковом градиенте концентрации вещества потоки из просвета кишечника в кровь и в обратном направлении должны быть равны. Иначе говоря, путем диффузии сахара переходят в кровь при высокой их концентрации в просвете кишки.

Наибольшее значение в процессе всасывания имеет активный транспорт. в этом случае моносахариды всасываются при участии специализированных комплексов-переносчиков, обеспечивающих перенос вещества через апикальную мембрану против градиента концентрации. Дальнейший путь сахаров из клеток через базальную мембрану эпителоицита в кровь осуществляется по градиенту концентрации.

У рыб гексозы всасываются быстрее, чем пентозы. Например, у линя быстрее всасывается глюкоза, затем галактоза, фруктоза и ксилоза. У щуки последовательность иная: галактоза, глюкоза, арабиноза, ксилоза, фруктоза. Установлено, что оптимальные концентрации глюкозы, обеспечивающие максимальную скорость всасывания в тонкой кишке рыб, значительно ниже таковых у высших позвоночных животных и колеблются в пределах 40-50%. При кормлении карпа концентрированными кормами лучше всего всасываются в кишечнике уроновые кислоты как продукты окисления моносахаридов. В отличие от галактоз всасывание маннозы и ксилозы происходит медленно. Не все сахара обладают способностью активно транспортироваться, и зависит это от конфигурации сахаров, т. е. от того, какой из стереоизомеров всасывается. D-глюкоза может всасываться против 20-кратного градиента, а L-глюкоза диффундирует только пассивно и распространяется поровну по обе стороны мембраны. По тому же принципу осуществляется транспорт D-галактозы и большинства других сахаров. в отличие от L-галактозы манноза, рамноза, фруктоза L-ряда практически не поступают и не включаются в метаболизм. D-глюкозамин непосредственно не переносится, но оказывает ингибирующее действие на всасывание глюкозы.

Процессы мембранного пищеварения углеводов и всасывание продуктов их гидролиза определяются характером субстратов, изменяются с возрастом рыб и подвержены сезонным колебаниям.

Переваривание белков

Протеолитические ферменты, участвующие в переваривании белков и пептидов, синтезируются и выделяются в полость пищеварительного тракта в виде проферментов, или зимогенов. Зимогены неактивны и не могут переваривать собственные белки клеток. Активируются протеолитические ферменты в просвете кишечника, где действуют на пищевые белки.

В желудочном соке человека имеются два протеолитических фермента - пепсин и гастриксин, которые очень близки по строению, что указывает на образование их из общего предшественника.

Пепсин образуется в виде профермента - пепсиногена - в главных клетках слизистой желудка. Выделено несколько близких по строению пепсиногенов, из которых образуется несколько разновидностей пепсина: пепсин I, II (IIa, IIb), III. Пепсиногены активируются с помощью соляной кислоты, выделяющейся обкладочными клетками желудка, и аутокаталитически, т. е. с помощью образовавшихся молекул пепсина.

Пепсиноген имеет молекулярную массу 40 000. Его полипептидная цепь включает пепсин (мол. масса 34 000); фрагмент полипептидной цепи, являющийся ингибитором пепсина (мол. масса 3100), и остаточный (структурный) полипептид. Ингибитор пепсина обладает резко основными свойствами, так как состоит из 8 остатков лизина и 4 остатков аргинина. Активация заключается в отщеплении от N-конца пепсиногена 42 аминокислотных остатков; сначала отщепляется остаточный полипептид, а затем ингибитор пепсина.

Пепсин относится к карбоксипротеиназам, содержащим остатки дикарбоновых аминокислот в активном центре с оптимумом pH 1,5-2,5.

Субстратом пепсина являются белки - либо нативные, либо денатурированные. Последние легче поддаются гидролизу. Денатурацию белков пищи обеспечивает кулинарная обработка или действие соляной кислоты. Следует отметить следующие биологические функции соляной кислоты :

  1. активация пепсиногена;
  2. создание оптимума pH для действия пепсина и гастриксина в желудочном соке;
  3. денатурация пищевых белков;
  4. антимикробное действие.

От денатурирующего влияния соляной кислоты и переваривающего действия пепсина собственные белки стенок желудка предохраняет слизистый секрет, содержащий гликопротеиды.

Пепсин, являясь эндопептидазой, быстро расщепляет в белках внутренние пептидные связи, образованные карбоксильными группами ароматических аминокислот - фенилаланина, тирозина и триптофана. Медленнее гидролизует фермент пептидные связи между лейцином и дикарбоновыми аминокислотами типа: в полипептидной цепи.

Гастриксин близок к пепсину по молекулярной массе (31 500). Оптимум pH у него около 3,5. Гастриксин гидролизует пептидные связи, образуемые дикарбоновыми аминокислотами. Соотношение пепсин/гастриксин в желудочном соке 4:1. При язвенной болезни соотношение меняется в пользу гастриксина.

Присутствие в желудке двух протеиназ, из которых пепсин действует в сильнокислой среде, а гастриксин в среднекислой, позволяет организму легче приспосабливаться к особенностям питания. Например, растительно-молочное питание частично нейтрализует кислую среду желудочного сока, и pH благоприятствует переваривающему действию не пепсина, а гастриксина. Последний расщепляет связи в пищевом белке.

Пепсин и гастриксин гидролизуют белки до смеси полипептидов (называемых также альбумозами и пептонами). Глубина переваривания белков в желудке зависит от длительности нахождения в нем пищи. Обычно это небольшой период, поэтому основная масса белков расщепляется в кишечнике.

Протеолитические ферменты кишечника. В кишечник протеолитические ферменты поступают из поджелудочной железы в виде проферментов: трипсиногена, химотрипсиногена, прокарбоксипептидаз А и В, проэластазы. Активирование этих ферментов происходит путем частичного протеолиза их полипептидной цепи, т. е. того фрагмента, который маскирует активный центр протеиназ. Ключевым процессом активирования всех проферментов является образование трипсина (рис. 1).

Трипсиноген, поступающий из поджелудочной железы, активируется с помощью энтерокиназы, или энтеропептидазы, которая вырабатывается слизистой кишечника. Энтеропептидаза также выделяется в виде предшественника киназогена, который активируется протеазой желчи. Активированная энтеропептидаза быстро превращает трипсиноген в трипсин, трипсин осуществляет медленный аутокатализ и быстро активирует все остальные неактивные предшественники протеаз панкреатического сока.

Механизм активирования трипсиногена заключается в гидролизе одной пептидной связи, в результате чего освобождается N-концевой гексапептид, называемый ингибитором трипсина. Далее трипсин, разрывая пептидные связи в остальных проферментах, вызывает образование активных ферментов. При этом образуются три разновидности химотрипсина, карбоксипептидазы А и В, эластаза.

Кишечные протеиназы гидролизуют пептидные связи пищевых белков и полипептидов, образовавшихся после действия желудочных ферментов, до свободных аминокислот. Трипсин, химотрипсины, эластаза, будучи эндопептидазами, способствуют разрыву внутренних пептидных связей, дробя белки и полипептиды на более мелкие фрагменты.

  • Трипсин гидролизует пептидные связи, образованные главным образом карбоксильными группами лизина и аргинина, менее активен он в отношении пептидных связей, образованных изолейцином.
  • Химотрипсины наиболее активны в отношении пептидных связей, в образовании которых принимает участие тирозин, фенилаланин, триптофан. По специфичности действия химотрипсин похож на пепсин.
  • Эластаза гидролизует те пептидные связи в полипептидах, где находится пролин.
  • Карбоксипептидаза А относится к цинксодержащим ферментам. Она отщепляет от полипептидов С-концевые ароматические и алифатические аминокислоты, а карбоксипептидаза В - только С-концевые остатки лизина и аргинина.

Ферменты, гидролизующие пептиды, имеются также и в слизистой кишечника, и хотя они могут секретироваться в просвет, но функционируют преимущественно внутриклеточно. Поэтому гидролиз небольших пептидов происходит после их поступления в клетки. Среди этих ферментов лейцинаминопептидаза, которая активируется цинком или марганцем, а также цистеином, и высвобождает N-концевые аминокислоты, а также дипептидазы, гидролизующие дипептиды на две аминокислоты. Дипептидазы активируются ионами кобальта, марганца и цистеином.

Разнообразие протеолитических ферментов приводит к полному расщеплению белков до свободных аминокислот даже в том случае, если белки предварительно не подвергались действию пепсина в желудке. Поэтому больные после операции частичного или полного удаления желудка сохраняют способность усваивать белки пищи.

Механизм переваривания сложных белков

Белковая часть сложных белков переваривается так же, как и простых белков. Простетические группы их гидролизуются в зависимости от строения. Углеводный и липидный компоненты после отщепления их от белковой части гидролизуются амилолитическими и липолитическими ферментами. Порфириновая группа хромопротеидов не расщепляется.

Представляет интерес процесс расщепления нуклеопротеидов, которыми богаты некоторые продукты питания. Нуклеиновый компонент отделяется от белка в кислой среде желудка. В кишечнике полинуклеотиды гидролизуются с помощью нуклеаз кишечника и поджелудочной железы.

РНК и ДНК гидролизуются под действием панкреатических ферментов - рибонуклеазы (РНКазы) и дезоксирибонуклеазы (ДНКазы). Панкреатическая РНКаза имеет оптимум pH около 7,5. Она расщепляет внутренние межнуклеотидные связи в РНК. При этом образуются более короткие фрагменты полинуклеотида и циклические 2,3-нуклеотиды. Циклические фосфодиэфирные связи гидролизуются той же РНКазой или кишечной фосфодиэстеразой. Панкреатическая ДНКаза гидролизует межнуклеотидные связи в ДНК, поступающей с пищей.

Продукты гидролиза полинуклеотидов - мононуклеотиды подвергаются действию ферментов кишечной стенки: нуклеотидазы и нуклеозидазы:

Эти ферменты обладают относительной групповой специфичностью и гидролизуют как рибонуклеотиды и рибонуклеозиды, так и дезоксирибонуклеотиды и дезоксирибонуклеозиды. Всасываются нуклеозиды, азотистые основания, рибоза или дезоксирибоза, Н 3 РO 4 .