Главная · Болезни кишечника · Корреляционный метод - реферат. Корреляционный анализ

Корреляционный метод - реферат. Корреляционный анализ

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

смертность

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Деревообрабатывающие производства

Кожевенники

Текстильные рабочие

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Строители

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Канцелярские работники

Продавцы

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный предполагает вычисление следующих парамет-ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

При наличии двух рядов значений, подвергающихся ранжированию, рационально рассчитывать ранговую корреляцию Спирмена.

Такие ряды могут представляться:

  • парой признаков, определяемых в одной и той же группе исследуемых объектов;
  • парой индивидуальных соподчиненных признаков, определяемых у 2 исследуемых объектов по одинаковому набору признаков;
  • парой групповых соподчиненных признаков;
  • индивидуальной и групповой соподчиненностью признаков.

Метод предполагает проведение ранжирования показателей в отдельности для каждого из признаков.

Наименьшее значение имеет наименьший ранг.

Этот метод относится к непараметрическому статистическому методу, предназначенному для установления существования связи изучаемых явлений:

  • определение фактической степени параллелизма между двумя рядами количественных данных;
  • оценка тесноты выявленной связи, выражаемой количественно.

Корреляционный анализ

Статистический метод, предназначенный для выявления существования зависимости между 2 и более случайными величинами (переменными), а также ее силы, получил название корреляционного анализа.

Получил свое название от correlatio (лат.) – соотношение.

При его использовании возможны варианты развития событий:

  • наличие корреляции (положительная либо отрицательная);
  • отсутствие корреляции (нулевая).

В случае установления зависимости между переменными речь идет об их коррелировании. Иными словами, можно сказать, что при изменении значения Х, обязательно будет наблюдаться пропорциональное изменение значения У.

В качестве инструментов используются различные меры связи (коэффициенты).

На их выбор оказывает влияние:

  • способ измерения случайных чисел;
  • характер связи между случайными числами.

Существование корреляционной связи может отображаться графически (графики) и с помощью коэффициента (числовое отображение).

Корреляционная связь характеризуется такими признаками:

  • сила связи (при коэффициенте корреляции от ±0,7 до ±1 – сильная; от ±0,3 до ±0,699 – средняя; от 0 до ±0,299 – слабая);
  • направление связи (прямая или обратная).

Цели корреляционного анализа

Корреляционный анализ не позволяет установить причинную зависимость между исследуемыми переменными.

Он проводится с целью:

  • установления зависимости между переменными;
  • получения определенной информации о переменной на основе другой переменной;
  • определения тесноты (связи) этой зависимости;
  • определение направления установленной связи.

Методы корреляционного анализа


Данный анализ может выполняться с использованием:

  • метода квадратов или Пирсона;
  • рангового метода или Спирмена.

Метод Пирсона применим для расчетов требующих точного определения силы, существующей между переменными. Изучаемые с его помощью признаки должны выражаться только количественно.

Для применения метода Спирмена или ранговой корреляции нет жестких требований в выражении признаков – оно может быть, как количественным, так и атрибутивным. Благодаря этому методу получается информация не о точном установлении силы связи, а имеющая ориентировочный характер.

В рядах переменных могут содержаться открытые варианты. Например, когда стаж работы выражается такими значениями, как до 1 года, более 5 лет и т.д.

Коэффициент корреляции

Статистическая величина характеризующая характер изменения двух переменных получила название коэффициента корреляции либо парного коэффициента корреляции. В количественном выражении он колеблется в пределах от -1 до +1.

Наиболее распространены коэффициенты:

  • Пирсона – применим для переменных принадлежащих к интервально шкале;
  • Спирмена – для переменных порядковой шкалы.

Ограничения использования коэффициента корреляции

Получение недостоверных данных при расчете коэффициента корреляции возможно в тех случаях, когда:

  • в распоряжении имеется достаточное количество значений переменной (25-100 пар наблюдений);
  • между изучаемыми переменными установлено, например, квадратичное соотношение, а не линейное;
  • в каждом случае данные содержат больше одного наблюдения;
  • наличие аномальных значений (выбросов) переменных;
  • исследуемые данные состоят из четко выделяемых подгрупп наблюдений;
  • наличие корреляционной связи не позволяет установить какая из переменных может рассматриваться в качестве причины, а какая – в качестве следствия.

Проверка значимости корреляции

Для оценки статистических величин используется понятие их значимости или же достоверности, характеризующей вероятность случайного возникновения величины либо крайних ее значений.

Наиболее распространенным методом определения значимости корреляции является определение критерия Стьюдента.

Его значение сравнивается с табличным, количество степенней свободы принимается как 2. При получении расчетного значения критерия больше табличного, свидетельствует о значимости коэффициента корреляции.

При проведении экономических расчетов достаточным считается доверительный уровень 0,05 (95%) либо 0,01 (99%).

Ранги Спирмена

Коэффициент ранговой корреляции Спирмена позволяет статистически установить наличие связи между явлениями. Его расчет предполагает установление для каждого признака порядкового номера – ранга. Ранг может быть возрастающим либо убывающим.

Количество признаков, подвергаемых ранжированию, может быть любым. Это достаточно трудоемкий процесс, ограничивающий их количество. Затруднения начинаются при достижении 20 признаков.

Для расчета коэффициента Спирмена пользуются формулой:

в которой:

n – отображает количество ранжируемых признаков;

d – не что иное как разность между рангами по двум переменным;

а ∑(d2) – сумма квадратов разностей рангов.

Применение корреляционного анализа в психологии

Статистическое сопровождение психологических исследований позволяет сделать их более объективными и высоко репрезентативными. Статистическая обработка данных полученных в ходе психологических экспериментов способствует извлечению максимума полезной информации.

Наиболее широкое применение в обработке их результатов получил корреляционный анализ.

Уместным является проведение корреляционного анализа результатов, полученных при проведении исследований:

  • тревожности (по тестам R. Temml, M. Dorca, V. Amen);
  • семейных взаимоотношений («Анализ семейных взаимоотношений» (АСВ) опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • уровня интернальности-экстернальности (опросник Е.Ф. Бажина, Е.А. Голынкиной и А.М. Эткинда);
  • уровня эмоционального выгорания у педагогов (опросник В.В. Бойко);
  • связи элементов вербального интеллекта учащихся при разно профильном обучении (методика К.М. Гуревича и др.);
  • связи уровня эмпатии (методика В.В. Бойко) и удовлетворенностью браком (опросник В.В. Столина, Т.Л. Романовой, Г.П. Бутенко);
  • связи между социометрическим статусом подростков (тест Jacob L. Moreno) и особенностями стиля семейного воспитания (опросник Э.Г. Эйдемиллера, В.В. Юстицкиса);
  • структуры жизненных целей подростков, воспитанных в полных и неполных семьях (опросник Edward L. Deci, Richard M. Ryan Ryan).

Краткая инструкция к проведению корреляционного анализа по критерию Спирмена

Проведение корреляционного анализа с использованием метода Спирмена выполняется по следующему алгоритму:

  • парные сопоставимые признаки располагаются в 2 ряда, один из которых обозначается с помощью Х, а другой У;
  • значения ряда Х располагаются в порядке возрастания либо убывания;
  • последовательность расположения значений ряда У определяется их соответствием значений ряда Х;
  • для каждого значения в ряду Х определить ранг — присвоить порядковый номер от минимального значения к максимальному;
  • для каждого из значений в ряду У также определить ранг (от минимального к максимальному);
  • вычислить разницу (D) между рангами Х и У, прибегнув к формуле D=Х-У;
  • полученные значения разницы возводятся в квадрат;
  • выполнить суммирование квадратов разниц рангов;
  • выполнить расчеты по формуле:

Пример корреляции Спирмена

Необходимо установить наличие корреляционной связи между рабочим стажем и показателем травматизма при наличии следующих данных:

Наиболее подходящим методом анализа является ранговый метод, т.к. один из признаков представлен в виде открытых вариантов: рабочий стаж до 1 года и рабочий стаж 7 и более лет.

Решение задачи начинается с ранжирования данных, которые сводятся в рабочую таблицу и могут быть выполнены вручную, т.к. их объем не велик:

Рабочий стаж Число травм Порядковые номера (ранги) Разность рангов Квадрат разности рангов
d(х-у)
до 1 года 24 1 5 -4 16
1-2 16 2 4 -2 4
3-4 12 3 2,5 +0,5 0,25
5-6 12 4 2,5 +1,5 2,5
7 и более 6 5 1 +4 16
Σ d2 = 38,5

Появление дробных рангов в колонке связано с тем, что в случае появления вариант одинаковых по величине находится среднее арифметическое значение ранга. В данном примере показатель травматизма 12 встречается дважды и ему присваиваются ранги 2 и 3, находим среднее арифметическое этих рангов (2+3)/2= 2,5 и помещаем это значение в рабочую таблицу для 2 показателей.
Выполнив подстановку полученных значений в рабочую формулу и произведя несложные расчёты получаем коэффициент Спирмена равный -0,92

Отрицательное значение коэффициента свидетельствует о наличии обратной связи между признаками и позволяет утверждать, что небольшой стаж работы сопровождается большим числом травм. Причем, сила связи этих показателей достаточно большая.
Следующим этапом расчётов является определение достоверности полученного коэффициента:
рассчитывается его ошибка и критерий Стьюдента


Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).

Когда повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Если же рост одной переменной происходит при снижении уровня другой, то говорят об отрицательной корреляции. При отсутствии связи переменных мы имеем дело с нулевой корреляцией.

При этом переменными могут быть данные тестирований, наблюдений, экспериментов, социально-демографические характеристики, физиологические параметры, особенности поведения и т. д. К примеру, использование метода позволяет нам дать количественно выраженную оценку взаимосвязи таких признаков, как: успешность обучения в вузе и степень профессиональных достижений по его окончании, уровень притязаний и стресс, количество детей в семье и качества их интеллекта, черты личности и профессиональная ориентация, продолжительность одиночества и динамика самооценки, тревожность и внутригрупповой статус, социальная адаптированность и агрессивность при конфликте...

В качестве вспомогательных средств, процедуры корреляции незаменимы при конструировании тестов (для определения валидности и надежности измерения), а также как пилотажные действия по проверке пригодности экспериментальных гипотез (факт отсутствия корреляции позволяет отвергнуть предположение о причинно-следственной связи переменных).

Усиление интереса в психологической науке к потенциалу корреляционного анализа обусловлено целым рядом причин. Во-первых, становится допустимым изучение широкого круга переменных, экспериментальная проверка которых затруднена или невозможна. Ведь по этическим соображениям, к примеру, нельзя провести экспериментальные исследования самоубийств, наркомании, деструктивных родительских воздействий, влияния авторитарных сект. Во-вторых, возможно получение за короткое время ценных обобщений данных о больших количествах исследуемых лиц. В-третьих, известно, что многие феномены изменяют свою специфику во время строгих лабораторных экспериментов. А корреляционный анализ предоставляет исследователю возможность оперировать информацией, полученной в условиях, максимально приближенных к реальным. В-четвертых, осуществление статистического изучения динамики той или иной зависимости нередко создает предпосылки к достоверному прогнозированию психологических процессов и явлений.

Однако следует иметь в виду, что применение корреляционного метода связано и с весьма существенными принципиальными ограничениями.

Так, известно, что переменные вполне могут коррелировать и при отсутствии причинно-следственной связи между собой.

Это иногда возможно в силу действия случайных причин, при неоднородности выборки, из-за неадекватности исследовательского инструментария поставленным задачам. Такая ложная корреляция способна стать, скажем, «доказательством» того, что женщины дисциплинированнее мужчин, подростки из неполных семей более склонны к правонарушениям, экстраверты агрессивнее интровертов и т. п. Действительно, стоит отобрать в одну группу мужчин, работающих в высшей школе, и женщин, предположим, из сферы обслуживания, да еще и протестировать тех и других на знание научной методологии, то мы получим выражение заметной зависимости качества информированности от пола. Можно ли доверять такой корреляции?

Еще чаще, пожалуй, в исследовательской практике встречаются случаи, когда обе переменные изменяются под влиянием некоей третьей или даже нескольких скрытых детерминант.

Если мы обозначим цифрами переменные, а стрелками - направления от причин к следствиям, то увидим целый ряд возможных вариантов:

1→ 2→ 3→ 4

1← 2← 3→ 4

1← 2→ 3→ 4

1← 2← 3← 4

Невнимание к воздействию реальных, но неучтенных исследователями факторов позволило представить обоснования того, что интеллект - сугубо наследуемое образование (психогенетический подход) или, напротив, что он обусловлен лишь влиянием социальных составляющих развития (социогенетический подход). В психологии, следует заметить, нераспространены феномены, имеющие однозначную первопричину.

Кроме того, факт наличия взаимосвязи переменных не дает возможности выявить по итогам корреляционного исследования причину и следствие даже в тех случаях, когда промежуточных переменных не существует.

Например, при изучении агрессивности детей было установлено, что склонные к жестокости дети чаще сверстников смотрят фильмы со сценами насилия. Означает ли это, что такие сцены развивают агрессивные реакции или, наоборот, подобные фильмы привлекают самых агрессивных детей? В рамках корреляционного исследования дать правомерный ответ на этот вопрос невозможно.

Необходимо запомнить: наличие корреляций не является показателем выраженности и направленности причинно-следственных отношений.

Другими словами, установив корреляцию переменных, мы можем судить не о детерминантах и производных, а лишь о том, насколько тесно взаимосвязаны изменения переменных и каким образом одна из них реагирует на динамику другой.

При использовании данного метода оперируют той или иной разновидностью коэффициента корреляции. Его числовое значение обычно изменяется от -1 (обратная зависимость переменных) до +1 (прямая зависимость). При этом нулевое значение коэффициента соответствует полному отсутствию взаимосвязи динамики переменных.

Например, коэффициент корреляции +0,80 отражает наличие более выраженной зависимости между переменными, чем коэффициент +0,25. Аналогично, зависимость между переменными, характеризуемая коэффициентом -0,95, гораздо теснее, чем та, где коэффициенты имеют значения +0,80 или + 0,25 («минус» указывает нам только на то, что рост одной переменной сопровождается уменьшением другой).

В практике психологических исследований показатели коэффициентов корреляции обычно не достигают +1 или -1. Речь может идти только о той или иной степени приближения к данному значению. Часто корреляция считается выраженной, если ее коэффициент выше ±0,60. При этом недостаточной корреляцией, как правило, считаются показатели, располагающиеся в интервале от -0,30 до +0,30.

Однако, сразу следует оговорить, что интерпретация наличия корреляции всегда предполагает определение критических значений соответствующего коэффициента. Рассмотрим этот момент более подробно.

Вполне может получиться так, что коэффициент корреляции равный +0,50 в некоторых случаях не будет признан достоверным, а коэффициент, составляющий +0,30, окажется при определенных условиях характеристикой несомненной корреляции. Многое здесь зависит от протяженности рядов переменных (т. е. от количества сопоставляемых показателей), а также от заданной величины уровня значимости (или от принятой за приемлемую вероятность ошибки в расчетах).

Ведь, с одной стороны, чем больше выборка, тем количественно меньший коэффициент будет считаться достоверным свидетельством корреляционных отношений. А с другой стороны, если мы готовы смириться со значительной вероятностью ошибки, то можем посчитать за достаточную небольшую величину коэффициента корреляции.

Существуют стандартные таблицы с критическими значениями коэффициентов корреляции. Если полученный нами коэффициент окажется ниже, чем указанный в таблице для данной выборки при установленном уровне значимости, то он считается статистически недостоверным.

Работая с такой таблицей, следует знать, что пороговой величиной уровня значимости в психологических исследованиях обычно считается 0,05 (или пять процентов). Разумеется, риск ошибиться будет еще меньше, если эта вероятность составляет 1 на 100 или, еще лучше, 1 на 1000.

Итак, не сама по себе величина подсчитанного коэффициента корреляции служит основанием для оценки качества связи переменных, а статистическое решение о том, можно ли считать вычисленный показатель коэффициента достоверным.

Зная это, обратимся к изучению конкретных способов определения коэффициентов корреляции.

Значительный вклад в разработку статистического аппарата корреляционных исследований внес английский математик и биолог Карл Пирсон (1857-1936), занимавшийся в свое время проверкой эволюционной теории Ч. Дарвина.

Обозначение коэффициента корреляции Пирсона (r) происходит от понятия регрессии - операции по сведению множества частных зависимостей между отдельными значениями переменных к их непрерывной (линейной) усредненной зависимости.

Формула для расчета коэффициента Пирсона имеет такой вид:

где x, y - частные значения переменных, S - (сигма) - обозначение суммы, а - средние значения тех же самых переменных. Рассмотрим порядок использования таблицы критических значений коэффициентов Пирсона. Как мы видим, в левой ее графе указано число степеней свободы. Определяя нужную нам строчку, мы исходим из того, что искомая степень свободы равна n -2, где n - количество данных в каждом из коррелируемых рядов. В графах же, расположенных с правой стороны, указаны конкретные значения модулей коэффициентов.

Причем, чем правее расположен столбик чисел, тем выше достоверность корреляции, увереннее статистическое решение о её значимости.

Если у нас, например, коррелируют два ряда цифр по 10 единиц в каждом из них и получен по формуле Пирсона коэффициент, равный +0,65, то он будет считаться значимым на уровне 0,05 (так как больше критического значения в 0,632 для вероятности 0,05 и меньше критического значения 0,715 для вероятности 0,02). Такой уровень значимости свидетельствует о существенной вероятности повторения данной корреляции в аналогичных исследованиях.

Теперь приведем пример вычисления коэффициента корреляции Пирсона. Пусть в нашем случае необходимо определить характер связи между выполнением одними и теми же лицами двух тестов. Данные по первому из них обозначены как x , а по второму - как y .

Для упрощения расчетов введены некоторые тождества. А именно:

При этом мы имеем следующие результаты испытуемых (в тестовых баллах):

Заметим, что число степеней свободы равно в нашем случае 10. Обратившись к таблице критических значений коэффициентов Пирсона, узнаем, что при данной степени свободы на уровне значимости 0,999 будет считаться достоверным любой показатель корреляции переменных выше, чем 0,823. Это дает нам право считать полученный коэффициент свидетельством несомненной корреляции рядов x и y .

Применение линейного коэффициента корреляции становится неправомерным в тех случаях, когда вычисления производятся в пределах не интервальной, а порядковой шкалы измерения. Тогда используют коэффициенты ранговой корреляции. Разумеется, результаты при этом получаются менее точными, так как сопоставлению подлежат не сами количественные характеристики, а лишь порядки их следования друг за другом.

Среди коэффициентов ранговой корреляции в практике психологических исследований довольно часто применяют тот, который предложен английским ученым Чарльзом Спирменом (1863-1945), известным разработчиком двухфакторной теории интеллекта.

Используя соответствующий пример, рассмотрим действия, необходимые для определения коэффициента ранговой корреляции Спирмена.

Формула его вычисления выглядит следующим образом:

где d - разности между рангами каждой переменной из рядов x и y ,

n - число сопоставляемых пар.

Пусть x и y - показатели успешности выполнения испытуемыми некоторых видов деятельности (оценки индивидуальных достижений). При этом мы располагаем следующими данными:

Заметим, что вначале производится раздельное ранжирование показателей в рядах x и y . Если при этом встречается несколько равных переменных, то им присваивается одинаковый усредненный ранг.

Затем осуществляется попарное определение разности рангов. Знак разности несущественен, так как по формуле она возводится в квадрат.

В нашем примере сумма квадратов разностей рангов ∑d 2 равна 178. Подставим полученное число в формулу:

Как мы видим, показатель коэффициента корреляции в данном случае составляет ничтожно малую величину. Тем не менее, сопоставим его с критическими значениями коэффициента Спирмена из стандартной таблицы.

Вывод: между указанными рядами переменных x и y корреляция отсутствует.

Надо заметить, что использование процедур ранговой корреляции предоставляет исследователю возможность определять соотношения не только количественных, но и качественных признаков, в том, разумеется, случае, если последние могут быть упорядочены по возрастанию выраженности (ранжированы).

Нами были рассмотрены наиболее распространенные, пожалуй, на практике способы определения коэффициентов корреляции. Иные, более сложные или реже применяемые разновидности данного метода при необходимости можно найти в материалах пособий, посвященных измерениям в научных исследованиях.



Лекция № 4

1. Сущность теории корреляции.

2. Вычисление коэффициента корреляции.

3. Оценка точности коэффициента корреляции.

4. Ранговая корреляция.

5. Получение эмпирических формул зависимости явлений.

6. Множественная корреляция.

7. Частная корреляция.

8. Компонентный и факторный анализы.

1 Сущность теории корреляции. Диалектический подход к изучению закономерностей природы и общества требует рассмотрения процессов и явлений в их сложных взаимосвязях.

Явления географической среды зависят от многих, часто неизвест­ных и меняющихся факторов. Выявить и изучить такие связи помогает теория корреляции - один из центральных разделов математической статистики, исключительно важный для исследователей.

Рисунок 4.1 – Функциональ­ная зависимость

Главные задачи корреляционного анализа - изучение формы, знака (плюс или минус) и тесноты связей.

Опишем кратко сущность теории корреляции.

Все связи делятся на функцио­нальные, рассматриваемые в курсах математического анализа, и корреля­ционные.

Функциональная зависимость предполагает однозначное соответ­ствие между величинами, когда численному значению одной величины, называемой аргументом, соответствует строго определенное значение другой величины - функции. При графическом изображении функцио­нальной связи в прямоугольной системе координат (х, у), если по оси абсцисс отложить значение одного признака, а по оси ординат - друго­го, все точки расположатся на одной линии (прямой или кривой). Функ­циональные (идеальные) связи встречаются в абстрактных математиче­ских обобщениях. Например, зависимость площади круга от радиуса (R) выразится на графике определенной кривой (рис. 1), построенной по формуле

В любой опытной науке экспериментатор имеет дело не с функ­циональными связями, а с корреляционными, для которых характерен известный разброс результатов эксперимента. Причина колеблемости заключается в том, что функция (изучаемое явление) зависит не только от одного или нескольких рассматриваемых факторов, но и от множест­ва других. Так, урожайность зерновых культур будет зависеть от ряда климатических, почвенных, экономических и других условий. Если связь урожайности с каким-либо из указанных факторов изобразить графически в системе координат (х, у), то получим разброс точек. Зако­номерности корреляционных связей и изучает теория корреляции.

В основе теории корреляции лежит представление о тесноте связи между изучаемыми явлениями (большая или малая связь). Для луч­шего уяснения редко встречаемого в географической литературе поня­тия «теснота связи» представим его в графической форме путем построения так называемого поля корреляции. Для этого результаты каждого наблюдения за элементами статистической совокупности по двум признакам отмечаем точкой в системе прямоугольных координат х и у. Таким путем, например, можно изобразить зависимость урожайно­сти зерновых по районам от гидротермического коэффициента. Чем больше разброс точек на поле корреляции, тем меньше теснота связи между изучаемыми явлениями. Рассмотрим два корреляционных поля (а и б, рис. 4.2). На поле а показана зависимость скорости роста оврагов (у) от площади водосбора (xi), на поле б - от угла наклона (хз). Меньший разброс точек первого корреляционного поля указывает на то, что скорость роста оврагов более тесно связана с площадями водосбо­ров, чем с углами наклона. Иначе можно сказать: изучаемое явление зависит от первого картометрического показателя в большей степени.



По общему направлению роя точек - слева вверх направо - можно заключить, что в обоих случаях связь положительная (со знаком плюс).


Рисунок 4.2 – Корреляционная положительная связь:
а) большая теснота связи б) малая теснота связи

Рисунок 4.3 – Корреляционная отрицательная связь

При отрицательной (минусовой) зависимости рой точек направлен слева вниз направо (рис. 4.3). По характеру размещения точек в рое, их близо­сти к оси можно визуально определить не только тесноту и знак связи, но и ее форму, которая подразделяется на прямолинейную и криволинейную.

Первая форма связи воспроиз­ведена на рис. 4.2 а и б. Она условна и является частным случаем связи криволинейной. Однако именно прямолинейная связь (при всей ее условности) рассматривается в географических и других исследо­ваниях наиболее часто из-за простоты математико-статистического аппарата ее оценки и возможности применения при изучении многофакторных связей и зависимостей.

Рисунок 4.4 – Криволинейная форма связи

Степень кривизны географических корреляционных связей во многом зависит от меридиональной протяженности изучаемых терри­торий. На рисунке 4.4 показана в схематизированном виде криволинейная зависимость среднегодовой температуры (t) от географической широты t(j) в глобальном масштабе - от южного полюса (ЮП) через экватор (Э) до северного полюса (СП). Чем меньше протяженность изучаемой территории с юга на север, тем больше оснований назвать ее прямолинейной.

Так, на восходящем отрезке АВ (южное полушарие) связь прямолинейная положительная, а на нисходящем отрезке CD (северное полушарие) - прямолинейная отрицательная. На приэкваториальном отрезке ВС связь сохраняется криволинейной.

Визуально-графический способ изучения тесноты и формы связи прост, нагляден, но недоста­точно точен. Математико-статистическая обработка результатов наблюдений позволяет определить чи­словые значения, характеризующие как форму, так и тесноту связей.

2 Вычисление коэффициента корреляции. Наиболее распространенным показателем тесноты прямолинейной связи двух количественных признаков считается коэффициент корре­ляции (r). Его абсолютное численное значение находится в пределах от О до 1. Чем теснее связь, тем больше абсолютное значение г.

Если r = 0, то связи нет, если он равен ±1, то связь функциональ­ная (точки расположатся строго по линии). Знак «плюс» (+) указывает на прямую (положительную) зависимость, «минус» – на обратную (отрицательную). Предельные значения коэффициента корреляции (r = + 1, 0 и - 1) в практике географических исследований не встречаются; обычно их числовые значения находятся между нулем и положительной или отрицательной единицей.

Рассмотрим наиболее распространенную схему вычисления, опирающуюся на предварительные расчеты средних арифметически, центральных отклонений и средних квадратических отклонений да каждого количественного признака. Предположим, необходимо найти тесноту связи между количеством осадков в июле (х) и урожайностью пшеницы (у). Эти данные вносятся в первые два столбца таблицы 1.

Схема вычисления коэффициента корреляции

– сумма по столбцу 5; n – число наблюдений; d x и d у – средние квадратические отклонения признаков х и у, вычисленные по формуле, при­веденной в лекции 2. В нашем примере связь хорошая.

Таблица 1

X У Х-Х У-У (х-х).(у-у) (Х-Х) 2 (У-У) 2
-50 -10
-50 -6
-10 -6
-1 -10
-10 -7
1 600
800 180 0 0 1560 8600 464

Затем вычисляем разности между конкретными значениями ис­ходных величин и их средними арифметическими. Результаты этих расчетов записываем в столбцы 3 и 4. Вычисление чисел в столбцах 5, б и 7 вполне понятно из надписей над соответствующими столбцами. Под каждым столбцом подсчитываем суммы. Коэффициент корреляции (г) вычисляем по формуле

Особо ценен 5-й столбец схемы, представляющий собой совокуп­ность произведений центральных отклонений и названный ковариаци­онным столбцом. Он позволяет проверить правильность определения знака и численного значения коэффициента корреляции по соотноше­нию сумм плюсовых и минусовых показателей членов ковариационного ряда. Чем больше разнятся суммы плюсов и минусов, тем теснее связь исходных показателей. Примерное равенство их свидетельствует о низ­кой связи. Знак коэффициента корреляции будет соответствовать знаку превышения одной суммы над другой.

Коэффициент корреляции, как и d, проще определяется без вы­числения отклонений от средней. Приведем схему такого вычисления по данным предыдущего примера. Схема проста, и для ее понимания достаточно надписей над столбцами таблицы 2.

3 Оценка точности коэффициента корреляции. Как и всякая другая выборочная математико-статистическая ха­рактеристика, коэффициент корреляции имеет свою ошибку репрезен­тативности, вычисляемую при больших выборках (n > 50) по формуле

Таким образом, точность вычисления коэффициента корреляции повышается с увеличением объема выборки; она велика также при большой тесноте связи (r близок к +1 или -1).

Приведем пример вычисления ошибки выборочного r.

Коэффици­ент корреляции между заболеваемостью дизентерией и одним из клима­тических факторов r = 0,82.

Показатель тесноты связи вычисляется по данным 64 пунктов. Тогда

Получив суммы по всем столбцам, вычисляем коэффициент корреляции по формуле

С точностью определения коэффициента корреляции тесно связан вопрос о реальности существования этой связи между рассматриваемы­ми признаками. При малом объеме выборки или малой тесноте связи часто ошибки, коэффициента корреляции оказываются настолько боль­шими и сопоставимыми с самим коэффициентом, что встает вопрос, не случайно ли его значение отличается от нуля и соответствует ли опре­деленный знак связи действительной ее направленности (плюсовой или минусовой?) Этот вопрос разрешается численным сравнением r

чаться от нуля случайно, и связь явлений не доказывается.

Проверим, существует ли связь между явлениями в нашем примере

связь недостоверна, то есть ее может и не быть.

4 Ранговая корреляция. В географических исследованиях при малых объемах выбора часто требуется обработать статистический материал быстро, не претендуя на высокую точность. Для этого можно ограничиться вычислением не коэффициента корреляции, а ранговой корреляции. Суть этого показателя состоит в том, что действительные значения количественных признаков заменяются их рангами, то есть последовательным рядом простых чисел, начиная с единицы в порядке возрастания признака Например, имеются данные об урожайности зерновых культур (у) и количестве осадков за два месяца перед колошением (х) по пяти районам (табл. 3, столбцы 1 и 2). Требуется вычислить тесноту связи. Заме­няем значения признаков их рангами Хр и Ур (столбцы 3 и 4), находим разности рангов (столбец 5), затем вычисляем квадраты этих разностей (столбец 6).

Ранговый коэффициент корреляции (r) вычисляется по формуле

Этот показатель тесноты связи рассчитывается главным образом то­гда, когда достаточно выяснить приближенную величину тесноты связи, и поэтому полученные результаты можно округлять лишь до десятого знака. Ранговый коэффициент корреляции представляет ценность еще и потому, что в распоряжение географа-исследователя часто поступают данные о многих природных и социально-экономических явлениях, заранее выраженные в рангах или баллах, а последние легко перевести в ранги.

5 Получение эмпирических формул зависимости явлений. Корреляционные методы позволяют определить не только тесноту связи явлений, но и эмпирические формулы зависимости, с помощью которых можно по одним признакам находить другие, часто недоступ­ные или мало доступные наблюдению.

При вычислении коэффициента корреляции обычно получают пять основных статистических показателей - , , d x , d у и r. Эти пока­затели дают возможность легко и быстро рассчитать параметры линей­ной зависимости у от х. Известно, что такая зависимость выражается формулой

Параметры а и b вычисляются по формулам

Например, необходимо построить эмпирическую формулу линей­ной зависимости урожайности (у) от процента гумуса в почве (х). При вычислении коэффициента корреляции были получены следующие

По найденной формуле можно представить примерную урожай­ность, зная процент гумуса на любом участке изучаемой территории. Так, если процент гумуса равен 10, то следует ожидать урожайность у = 7+0,6-х ==7+0,6-10 =13 ц/га.

Чем больше абсолютная величина r , тем более точной и надежной будет эмпирическая формула зависимости.

6 Множественная корреляция. При изучении многофакторных связей встает проблема определе­ния степени совместного влияния нескольких факторов на исследуемое явление.

Корреляционный анализ обычно начинается с вычисления парных коэффициентов корреляции (r xy), выражающих степень зависимости изучаемого явления (у) от какого-либо фактора (х). Например, опреде­ляются коэффициенты корреляции между урожайностью зерновых культур, с одной стороны, и рядом климатических, почвенных и эконо­мических факторов - с другой. Анализ полученных парных коэффициентов корреляции позволяет выявить наиболее важные факторы уро­жайности.

Следующая ступень корреляционного анализа заключается в том, что вычисляется коэффициент множественной корреляции (R), показы­вающий степень совместного влияния важнейших факторов (x 1 , x 2 , ... x n) на изучаемое явление (у), например, на урожайность зерновых куль­тур. Расчет для множества факторов представляет собой очень трудоем­кий процесс, часто требующий применения ЭВМ.

Рассмотрим простейший пример вычисления степени совокупного влияния на урожайность (у) только двух факторов: гидротермического коэффициента (x 1) и стоимости основных средств производства (х 2). Для этого вначале следует определить коэффициенты корреляции меж­ду тремя признаками (у, x 1 , и х 2) попарно. Оказалось, что

1) коэффициент корреляции между урожайностью зерновых культур (у) и гидротермическим коэффициентом (х 1) == 0,80;

2) коэффициент корреляции между урожайностью зерновых культур (у) и стоимостью основных средств производства (х 2) == 0,67;

3) коэффициент корреляции между самими факторами урожайности (гидротермическим коэффициентом и стоимостью основных средств производства) = 0,31.

Коэффициент множественной корреляции, выражающий зависи­мость изучаемого явления от совокупного влияния двух факторов, вы­числяется по формуле

В нашем примере

Совокупное влияние нескольких факторов на изучаемое явление больше, чем каждого из этих факторов в отдельности. Действительно, 0,92 больше как 0,80, так и 0,67.

Квадрат коэффициента множественной корреляции (R 2 = 0,84) означает, что колеблемость урожайности зерновых объясняется воздей­ствием учтенных факторов (гидротермические коэффициенты и стои­мость основных средств производства) на 84%. На долю остальных неучтенных факторов приходится всего 16%.

Линейную зависимость одной переменной (у) от двух других можно выразить уравнением

7 Частная корреляция. В предыдущем параграфе была рассмотрена схема вычисления я коэффициента множественной корреляции, выражающего степень совместного воздействия двух факторов (x 1 и х 2) на изучаемое явление у. Представляет интерес выявить, как тесно связан у с x 1 при постоянстве величине х 2 ; или у с х 2 при исключении влияния x 1 . Для этого следу вычислить коэффициент частной корреляции () по формуле:

, (13)

Где ryx 1 – коэффициент корреляции между первым фактором и изучаемым явлением (у), ryx 2 – коэффициент корреляции между вторым фактором (х 2) и изучаемым явлением (у), rx 1 x 2 – коэффициент корреляции между факторами (х 1) (х 2)

Пользу коэффициента частной корреляции покажем на приме изучения овражной эрозии. Известно, что скорость роста оврагов во многом зависит от энергии поверхностного стока, определяемой eё объемом и скоростью. Первая характеристика может быть выражена таким морфометрическим показателем, как площадь водосбора при вершине оврага, а скорость стока - углом наклона у вершины оврага. Были измерены скорости роста n-го числа оврагов (у), углы наклов (x 1) и площади водосбора (х 2), вычислены парные коэффициенты корреляции: =: - 0,2, = 0,8; == - 0,7. Отрицательное значение первого коэффициента корреляции выглядит парадоксальным. Действительно, трудно представить, чтобы скорости роста оврагов были тем больше, чем меньше угол наклона.

Рисунок 4.5 – Продольный профиль балки растущего оврага

Объяснить эту аномалию может обычно вогнутая форма продольного профиля балки, где растет овраг (рис. 4.5). Благодаря такой форме профиля наблюдается противоположность воздействия двух рассматриваемых факторов (x 1 , и х 2) на ско­рость роста оврагов (у): овраг, начинающий свое развитие в устье балка имеет малый угол наклона (a i), но зато наибольшую площадь водосбо­ра, обеспечивающую максимальный объем стекающей воды. По мера приближения вершины оврага к водоразделу угол наклона растет (a 1 , a 2 , a 3 , a 4 , a 5), но площадь водосбора уменьшается (S 1 – S 5). Преоб­ладающее воздействие площади водосбора (объема воды) над воздейст­вием угла наклона (ее скорости) и привело к отрицательному значению зависимости скорости роста оврагов от угла наклона. Разнонаправленность воздействия двух рассмотренных факторов объясняет также ми­нусовой знак их корреляционной взаимозависимости (== - 0.7). Для того, чтобы определить, насколько велика зависимость скорости роста оврагов от угла наклона при исключении влияния другого фактора (площади водосбора), необходимо вычислить коэффициент частной корреляции по формуле (13). Оказалось, что

Таким образом, только в результате корреляционных расчетов ста­ло возможным убедиться в прямой, а не обратной зависимости скорости роста оврагов от угла наклона, но только при условии исключения воз­действия площади водосбора.

8 Компонентный и факторный анализы. Из множества известных показателей тесноты корреляционных связей следует подчеркнуть особо важное значение коэффициента кор­реляции. Его отличает прежде всего повышенная информативность -способность оценивать не только тесноту, но и знак связи. Коэффици­енты корреляции лежат в основе вычисления более сложных показате­лей, характеризующих взаимосвязи не двух, а большего числа факторов.

Рассмотренный в настоящей лекции аппарат множественной и ча­стной корреляции правомерно считать начальным этапом изучения многофакторных корреляционных связей и зависимостей в географии. В условиях активной информатизации и компьютеризации человеческо­го общества наших дней перспектива развития этого направления ви­дится в использовании более сложного аппарата факторного и компо­нентного анализов. Их объединяет: наличие исключительно большого объема разнообразной информации, необходимость ее математической обработки с помощью ЭВМ, способность «сжимать» информацию, выделять главные и исключать второстепенные показатели, факторы и компоненты.

Факторный анализ предназначен для сведения множества исходныx количественных показателей к малому числу факторов. На их основе вычисляются интегральные показатели, несущие в себе информацию нового качества. В основе математических расчетов лежит создание матрицы, элементами которой выступают обычные коэффициенты корреляции или ковариации, отражающие попарные связи между всеми исходными количественными показателями.

Компонентный анализ (метод главных компонент) в отличие о факторного анализа опирается на массовые расчеты не корреляций, дисперсий, характеризующих колеблемость количественных признаке; л

В результате таких математических расчетов любое самое большое число исходных данных заменяется ограниченным числомглавных компонент, отличающихся наиболее высокой дисперсностью, а, следовательно, и информативностью.

Желающим глубже познакомиться с теорией, методикой и накопленным опытом использования факторного и компонентного анализов в географических исследованиях следует обратиться к работам С.Н. Сербенюка (1972), Г.Т. Максимова (1972), П.И. Рахлина (1973), В.Т. Жукова, С.Н. Сербенюка, B.C. Тикунова (1980), В.М. Жуковской (1964), B.M. Жуковской, И.М. Кузиной (1973), В.М. Жуковской, И.Б. Мучник (1976):

В заключение отметим, что при криволинейных зависимостях коэффициенту корреляции не всегда можно доверять, особенно когда изучаются природные явления на территориях значительной протяжен­ности с севера на юг. В этом случае лучше вычислять корреляционные отношения, которые нуждаются в большом объеме статистической со­вокупности и в предварительной группировке данных (Лукомский, 1961).

ВОПРОСЫ И ЗАДАНИЯ

1. Назовите главные задачи корреляционного анализа.

2. Опишите схему вычисления коэффициента корреляции.

3. Как вычисляется ошибка выборочного коэффициента корреляции?

4. Какова схема вычисления рангового коэффициента корреляции?

5. Опишите получение эмпирических формул зависимости для двух показателей. Каково их использование?

6. В чем сущность множественного коэффициента корреляции?

7. Каково назначение частного коэффициента корреляции?

8. Что такое компонентный анализ?

9. Дайте определение факторного анализа.

Корреляционные методы (correlation methods)

К. м., получившие свое назв. благодаря тому, что основываются на «со-отношении» («co-relation») переменных, представляют собой статистические методы, начало к-рым было положено в работах Карла Пирсона примерно в конце XIX в. Они тесно связаны с понятием регрессии, еще раньше сформулированным сэром Фрэнсисом Гальтоном, к-рый первым начал статистически изучать связь между ростом отцов и сыновей. Именно Гальтон нанял Пирсона в качестве статистика для обработки рез-тов исслед., к-рые он и его отец, находясь под влиянием идей своих родственников - Дарвинов, проводили с целью определения вклада наследственности в развитие челов. качеств. Благодаря этому сотрудничеству между Гальтоном и Пирсоном и более ранним открытиям первого в области регрессионного анализа символ «r» (первая буква слова regression) исторически закрепился в качестве маркера К. м.

Корреляция как произведение моментов

Пирсон определял коэффициент корреляции как «среднее произведение Z-оценок». С этих пор r известен всем как коэффициент произведения моментов:

r = (aZxZy) / N.

Его обоснованное вычисление предполагает, что: а) две коррелируемые переменные непрерывны и нормально распределены; б) линии наилучшего соответствия для совместного двумерного распределения яв-ся прямыми; в) одинаковая вариабельность сохраняется по всей широте совместного распределения переменных. Простая формула для вычисления коэффициента корреляции произведения моментов Пирсона по «сырым» (нестандартизованным) данным выглядит следующим образом:

Бисериальная корреляция

Разновидностью коэффициента корреляции произведения моментов яв-ся бисериальный коэффициент корреляции, тж разраб. Пирсоном. В тех случаях, когда только одна из переменных непрерывна и имеет приемлемо нормальное распределение, а др. искусственно дихотомизирована (предполагается, что она тоже непрерывна и нормально распределена, но представлена в бинарной форме, напр.: «справился/не справился»), связь между этими двумя переменными тж можно выразить при помощи r. В этом случае коэффициент корреляции обозначается через rbis. Как и коэффициент произведения моментов r, он изменяется в диапазоне от +1,00 (прямая функциональная связь) через 0,00 (отсутствие связи) до -1,00 (обратная функциональная связь). Метод бисериальной корреляции оказался весьма полезным в процедурах анализа заданий, т. к. он измеряет связь между рез-тами выполнения каждого задания теста, выраженными в бинарной форме («справился/не справился»), и общей оценкой по данному тесту.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r. Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через rpbis Поскольку в rpbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае rbis, его знак определяется произвольно. Поэтому для всех практ. целей rpbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции rtet, к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления rtet достаточно сложны. Поэтому при практ. применении этого метода используются приближения rtet, получаемые на основе сокращенных процедур и таблиц.

Ранговая корреляция

Непараметрический аналог параметрических методов корреляции существует в форме коэффициента ранговой корреляции, обозначаемого греческой буквой ρ(ро). Он применяется для определения степени связи между двумя переменными, значения к-рых представлены рангами, а не «сырыми» или стандартизованными оценками. Логическое обоснование вывода коэффициента ρ не требует соблюдения строго определенного набора допущений, и потому ρ является непараметрической стат. Его формула, получаемая из формулы произведения моментов Пирсона путем замены интервальных данных на ранжированные, приводится к виду:

ρ = 1 - (6Σd2) / N(N2 - 1), где d - ранговая разность, а N - число пар вариантов.

Множественная корреляция

Методы корреляции произведения моментов Пирсона и линейного регрессионного анализа Гальтона были обобщены и расширены в 1897 г. Джорджем Эдни Юлом до модели множественной линейной регрессии, предполагающей использование многомерного нормального распределения. Методы множественной корреляции позволяют оценить связь между множеством непрерывных независимых переменных и одной зависимой непрерывной переменной. Коэффициент множественной корреляции обозначается через R0.123...p Его вычисление требует решения совместной системы линейных уравнений. Число линейных уравнений равно числу независимых переменных.

Иногда необходимо исключить эффект третьей переменной, с тем чтобы определить «чистую» связь между любой парой переменных. Частный (парциальный) коэффициент корреляции выражает связь между двумя переменными при исключенном (элиминированном) влиянии еще одной или неск. др. переменных. В простейшем случае частный коэффициент корреляции вычисляется как функция парных корреляций (произведений моментов) между Y, X1 и Х2:

Если требуется исключить влияние двух переменных, скажем, Х2 и Х3, то формула принимает вид:

Каноническая корреляция

Множественная корреляция, позволяющая оценивать тесноту связи между множеством независимых переменных и одной из множества зависимых переменных, представляет собой частный случай более общего метода - канонической корреляции. Этот метод был разраб. в 1935 г. Гарольдом Хотеллингом. Коэффициенты канонической корреляции (RCi) определяются на двух множествах переменных. Чтобы показать связи, существующие между этими двумя множествами непрерывных переменных, вычисляется неск. канонических коэффициентов; их число определяется по числу переменных в меньшем множестве (если число переменных в них не одинаково). При канонической корреляции в обоих множествах (по отдельности) отыскиваются линейные комбинации входящих в них переменных, позволяющие определить (новые) координатные оси в пространстве каждого множества. Каждая такая линейная комбинация наз. канонической величиной (или канонической переменной). Канонические переменные отличаются друг от друга весами, к-рые они придают первичным переменным в соотв. множестве. Каноническая корреляция - это корреляция произведения моментов между парой канонических переменных, по одной из каждого множества. Т. о., каждый коэффициент канонической корреляции является мерой тесноты линейной связи между двумя координатными осями соотв. множеств переменных. Каноническая корреляция яв-ся методом многомерного статистического анализа.