Главная · Аппендицит · Строение и функции нервов. Нервы. Передаточная функция нейрона. Физиология нервов. Классификация нервов

Строение и функции нервов. Нервы. Передаточная функция нейрона. Физиология нервов. Классификация нервов

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Строение нервов

Развитие спинномозговых нервов

Образование и ветвление спинномозговых нервов

Закономерности хода и ветвления нервов

Нервная система человека подразделяется на центральную, периферическую и авто-

номную части. Периферическая часть нервной системы представляет собой совокуп-

ность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Таким образом, периферическая часть нервной системы объединяет все нервные образования, лежащие вне спинного и головного мозга. Такое объединение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Периферические нервы состоят из волокон, имеющих различное строение и неодина-

ковых в функциональном отношении. В зависимости от наличия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные) (Рис. 1). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм) (Рис. 2). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних – 30-80 м/с, в тонких – 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие – болевой. Безмиелиновые волокна имеют небольшой диаметр – 1-4 мкм и проводят импульсы со скоростью 1-2 м/с (Рис. 3). Они являются эфферентными волокнами вегетативной нервной системы.

Таким образом, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. Поэтому при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. Например, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.



Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что

предохраняет их от перерастяжения и создает резерв удлинения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% – в пожилом возрасте (Рис. 4).

Нервы обладают системой собственных оболочек (Рис. 5). Наружная оболочка, эпиневрий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпиневрия выполняет все промежутки между отдельными пучками нервных волокон.

В эпиневрии в большом количестве находятся толстые пучки коллагеновых волокон,

идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпиневрия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпиневрия – очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Нет единого мнения о природе эластических волокон эпиневрия. Одни авторы считают, что в эпиневрии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпиневрия.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей

установлено, что толщина эпиневрия колеблется в пределах от 18-30 до 650 мкм, но

чаще составляет 70-430 мкм.

Эпиневрий – в основном питающая оболочка. В эпиневрии проходят кровеносные и

лимфатические сосуды, vasa nervorum , которые проникают отсюда в толщу нервного

ствола (Рис. 6).

Следующая оболочка, периневрий, покрывает пучки волокон, из которых состоит нерв Она является механически наиболее прочной. При световой и электронной

микроскопии установлено, что периневрий состоит из нескольких (7-15) слоев плоских клеток (периневрального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Установлено, что пучки коллагеновых волокон имею в периневрии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. Тонкие коллагеновые волокна образуют в периневрии двойную спиральную систему. Причем волокна образуют в периневрии волнистые сети с периодичностью около 6 мкм. В периневрии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые – в глубоком слое.

Толщина периневрия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются периневральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что периневрий имеет гофрированную, складчатую организацию. Периневрию придается большое значение в барьерной функции и обеспечении прочности нервов. Периневрий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Периневральные влагалища одного нерва соединяются с периневральными влагали-

щами соседних нервов, и через эти соединения происходит переход волокон из одного нерва в другой. Если учесть все эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой периневральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между соседними нервами. Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным

футляром отдельные нервные волокна (Рис. 8). Клетки и внеклеточные структуры эн-

доневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри периневральных футляров по сравнению с массой нервных волокон невелико.

Нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определением нервного пучка является группа нервных волокон, ограниченная от других образований нервногоствола периневральной оболочкой. И этим определением руководствуются при исследовании морфологи. Однако при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные периневральные оболочки, но и окружены об-

щим периневрием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим периневрием, получили название первичных пучков, а более мелкие, их составляющие, – вторичных пучков. На поперечном срезе нервов человека соединительнотканные оболочки (эпиневрий периневрий) занимают значительно больше места (67-84%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве.

Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

В зависимости от строения пучков выделяют две крайние формы нервов: малопучко-

вую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот.

Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием не-

большого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. Однако установлено, что в центре нерва пучки всегда тоньше, на периферии – наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое

строение нервных стволов на правой и левой сторонах тела. Например, диафрагмаль-

ный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв –

наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в

срединном нерве от 9442 до 21371, в локтевом нерве – от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве – от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются соседние близлежащие артерии и их

ветви (Рис. 9). К нерву обычно подходят несколько артериальных ветвей, причем ин-

тервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве – до 7-9 см. Кроме того, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпиневрии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпиневрии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпиневрии. В периневрии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпиневрия и эпиневральными лимфатическими щелями. Таким образом, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

Нервная система человека является стимулятором работы мышечной системы, о которой мы говорили в . Как мы уже знаем, мышцы нужны для передвижения частей тела в пространстве, и мы даже изучили конкретно, какие мышцы для какой работы предназначены. Но что приводит мышцы в действие? Что и как заставляет их работать? Об этом и пойдет речь в данной статье, из которой вы почерпнете необходимый теоретический минимум для освоения темы, обозначенной в названии статьи.

Прежде всего, стоит сообщить, что нервная система предназначена для передачи информации и команд нашего тела. Основные функции нервной системы человека – это восприятие изменений внутри тела и окружающего его пространства, интерпретация этих изменений и ответ на них в виде определенной формы (в т. ч. – мышечного сокращения).

Нервная система – множество разных, взаимодействующих между собой нервных структур, обеспечивающая наряду с эндокринной системой координированное регулирование работы большей части систем организма, а также отклик на смену условий внешней и внутренней среды. Данная система объединяет в себе сенсибилизацию, двигательную активность и корректное функционирование таких систем, как эндокринная, иммунная и не только.

Строение нервной системы

Возбудимость, раздражимость и проводимость характеризуются как функции времени, то есть это – процесс, возникающий от раздражения до появления ответной реакции органа. Распространение нервного импульса в нервном волокне происходит за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна. Нервная система человека обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.

Строение нервной системы человека: 1- плечевое сплетение; 2- кожно-мышечный нерв; 3- лучевой нерв; 4- срединный нерв; 5- подвздошно-подчревный нерв; 6- бедренно-половой нерв; 7- запирающий нерв; 8- локтевой нерв; 9- общий малоберцовый нерв; 10- глубокий малоберцовый нерв; 11- поверхностный нерв; 12- мозг; 13- мозжечок; 14- спинной мозг; 15- межреберные нервы; 16- подреберный нерв; 17- поясничное сплетение; 18- крестцовое сплетение; 19- бедренный нерв; 20- половой нерв; 21- седалищный нерв; 22- мышечные ветви бедренных нервов; 23- подкожный нерв; 24- большеберцовый нерв

Нервная система функционирует как единое целое с органами чувств и управляется головным мозгом. Самая крупная часть последнего называется большими полушариями (в затылочной области черепа находятся два более мелких полушария мозжечка). Головной мозг соединяется со спинным. Правое и левое большие полушария соединены между собой компактным пучком нервных волокон, называемых мозолистым телом.

Спинной мозг – основной нервный ствол тела – проходит через канал, образованный отверстиями позвонков, и тянется от головного мозга до крестцового отдела позвоночника. С каждой стороны спинного мозга симметрично отходят нервы к различным частям тела. Осязание в общих чертах обеспечивается определенными нервными волокнами, бесчисленные окончания которых находятся в коже.

Классификация нервной системы

Так называемые виды нервной системы человека можно представить следующим образом. Всю целостную систему условно формируют: центральная нервная система – ЦНС, в состав которой входит головной и спинной мозг, и периферическая нервная система – ПНС, в которую входят многочисленные нервы, отходящие от головного и спинного мозга. Кожа, суставы, связки, мышцы, внутренние органы и органы чувств отправляют по нейронам ПНС входные сигналы в ЦНС. В то же время, исходящие сигналы от центральной НС, периферическая НС посылает к мышцам. В качестве наглядного материала, ниже, логически структурированным образом представлена целостная нервная система человека (схема).

Центральная нервная система – основа нервной системы человека, которая состоит из нейронов и их отростков. Главная и характерная функция ЦНС – реализация различных по степени сложности отражательных реакций, имеющих название рефлексов. Низшие и средние отделы ЦНС – спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок – управляют деятельностью отдельных органов и систем организма, реализуют между ними связь и взаимодействие, обеспечивают целостность организма и его корректное функционирование. Высший отдел ЦНС – кора больших полушарий головного мозга и ближайшие подкорковые образования – по большей части управляет связью и взаимодействием организма как целостной структуры с внешним миром.

Периферическая нервная система – является условно выделяемой частью нервной системы, которая находится за пределами головного и спинного мозга. Включает в себя нервы и сплетения вегетативной нервной системы, соединяя ЦНС с органами тела. В отличие от ЦНС, ПНС не защищена костями и может быть подвержена воздействию механических повреждений. В свою очередь, саму периферическую нервную систему делят на соматическую и вегетативную.

  • Соматическая нервная система – часть нервной системы человека, которая представляет собой комплекс чувствительных и двигательных нервных волокон, отвечающих за возбуждение мышц, и в том числе кожи и суставов. Также она руководит координацией движений тела, и получением и передачей внешних стимулов. Эта система выполняет действия, которыми человек управляет осознанно.
  • Вегетативную нервную систему делят на симпатическую и парасимпатическую. Симпатическая нервная система управляет ответной реакцией на опасности или стресс, и кроме прочего, может вызвать увеличение частоты сердечных сокращений, повышение кровяного давления и возбуждение органов чувств, за счет увеличения уровня адреналина в крови. Парасимпатическая нервная система, а свою очередь, управляет состоянием покоя, и регулирует сокращение зрачков, замедление сердечного ритма, расширение кровеносных сосудов и стимуляцию пищеварительной и мочеполовой системы.

Выше вы можете видеть логически структурированную схему, на которой приведены отделы нервной системы человека, в порядке, соответствующем вышеизложенному материалу.

Строение и функции нейронов

Все движения и упражнения контролируются нервной системой. Основной структурной и функциональной единицей нервной системы (как центральной, так и периферической) является нейрон. Нейроны – это возбудимые клетки, которые способны генерировать и передавать электрические импульсы (потенциалы действия).

Строение нервной клетки: 1- тело клетки; 2- дендриты; 3- ядро клетки; 4- миелиновая оболочка; 5- аксон; 6- окончание аксона; 7- синаптическое утолщение

Функциональной единицей нейромышечной системы является двигательная единица, которая состоит из двигательного нейрона и иннервируемых им мышечных волокон. Собственно, работа нервной системы человека на примере процесса иннервации мышц происходит следующим образом.

Клеточная мембрана нерва и мышечного волокна является поляризованной, то есть на ней существует разность потенциалов. Внутри клетки содержится высокая концентрация ионов калия (К), а снаружи – ионов натрия (Na). В покое разность потенциалов между внутренней и внешней стороной клеточной мембраны не приводит к возникновению электрического заряда. Эта определенная величина представляет собой потенциал покоя. Из-за изменений во внешнем окружении клетки потенциал на ее мембране постоянно колеблется, и если он возрастает, и клетка достигает своего электрического порога возбуждения, происходит резкое изменение электрического заряда мембраны, и она начинает проводить потенциал действия вдоль аксона к иннервируемой мышце. К слову, в крупных мышечных группах, один двигательный нерв может иннервировать до 2-3 тысяч мышечных волокон.

На схеме ниже вы можете видеть пример того, какой путь проходит нервный импульс от момента возникновения стимула до получения на него ответной реакции в каждой, отдельно взятой системе.

Нервы соединяются между собой посредством синапсов, а с мышцами – с помощью нервно-мышечных контактов. Синапс – это место контакта между двумя нервными клетками, а – процесс передачи электрического импульса от нерва к мышце.

Синаптическая связь: 1- нейронный импульс; 2- принимающий нейрон; 3- ветвь аксона; 4- синаптическая бляшка; 5- синаптическая щель; 6- молекулы нейотрансмиттера; 7- клеточные рецепторы; 8- дендрит принимающего нейрона; 9- синаптические пузырьки

Нервно-мышечный контакт: 1- нейрон; 2- нервное волокно; 3- нервно-мышечный контакт; 4- двигательный нейрон; 5- мышца; 6- миофибриллы

Таким образом, как мы уже говорили – процесс физической активности в целом и мышечного сокращения в частности является полностью подконтрольным нервной системе.

Заключение

Сегодня мы узнали о предназначении, строении и классификации нервной системы человека, а так же о том, как она связана с его двигательной активностью и как она влияет на работу всего организма в целом. Поскольку нервная система вовлечена в регуляцию деятельности всех органов и систем человеческого тела, в том числе, и возможно, в первую очередь – сердечно – сосудистой, то в следующей статье из цикла о системах организма человека, к ее рассмотрению мы и перейдем.

Рисунок 1. Нервный ствол (в поперечном разрезе) состоит из миелиновых и безмиелиновых нервных волокон и соединительнотканных оболочек. Миелиновые нервные волокна (1) имеют вид округлых профилей, центральная часть которых занята осевым цилиндром. Эпиневрий (2) - соединительная ткань, покрывающая нерв с поверхности. Полутонкий срез, фиксация осмиевой кислотой.

Оболочки нерва

К оболочкам нерва относятся эндоневрий (endoneurium), периневрий (perineurium) и эпиневрий (epineurium).

Эндоневрий

Эндоневрий - рыхлая соединительная ткань между отдельными нервными волокнами.

Периневрий

Периневрий содержит наружную часть - плотную соединительную ткань, окружающую каждый пучок нервных волокон, и внутреннюю часть - несколько концентрических слоёв плоских периневральных клеток, снаружи и изнутри покрытых исключительно толстой базальной мембраной, содержащей коллаген типа IV, ламинин, нидоген и фибронектин.

Периневральный барьер необходим для поддержания гомеостаза в эндоневрии, его образует внутренняя часть периневрия - эпителиоподобный пласт периневральных клеток, соединённых при помощи плотных контактов. Барьер контролирует транспорт молекул через периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.

Эпиневрий

Эпиневрий - волокнистая соединительная ткань, объединяющая все пучки в составе нерва.

Кровоснабжение

Периферический нерв содержит разветвлённую сеть кровеносных сосудов. В эпиневрии и в наружной (соединительнотканной) части периневрия - артериолы и венулы, а также лимфатические сосуды. Эндоневрий содержит кровеносные капилляры.

Иннервация

Периферический нерв имеет специальные нервные волокна - nervi nervorum - тонкие чувствительные и симпатические нервные волокна. Их источник: сам нерв или сосудистые нервные сплетения. Терминали nervi nervorum прослежены в эпи-, пери- и эндоневрии.

Сквозь наружную оболочку нерва видны белые пучки нервных волокон. Толщина нерва обусловлена количеством и калибром образующих его пучков, которые представляют значительные индивидуальные колебания в числе и величине на разных уровнях строения нерва. В седалищных нервах человеках на уровне седалищного бугра число пучков колеблется от 54 до 126; в большеберцовом нерве, на уровне верхней трети голени - от 41 до 61. Небольшое число пучков обнаруживается в крупнопучковых нервах, наибольшее количество пучков содержат мелкопучковые стволы.

Представление о распределении пучков нервных волокон в нервах подвергалось изменению в течение последних десятилетий. Сейчас твердо установлено существование сложного внутриствольного сплетения пучков нервных волокон, меняющихся на разных уровнях в количественном отношении.

Большие колебания в количестве пучков в одном нерве на разных уровнях показывают сложность внутриствольного строения нервов. В одном из исследованных срединных нервов на уровне верхней трети плеча был обнаружен 21 пучок, на уровне средней трети плеча - 6 пучков, на уровне локтевой ямки - 22 пучка, в средней трети предплечья - 18 пучков и в нижней трети предплечья - 28 пучков.

В строении нервов предплечья обнаружено или увеличение количества пучков в дистальном направлении при уменьшении их калибра, или же увеличение размера пучков благодаря их слиянию. В стволе седалищного нерва количество пучков в дистальном направлении постепенно уменьшается. В ягодичной области количество пучков в нерве достигает 70, в большеберцовом нерве вблизи деления седалищного нерва их - 45, во внутреннем подошвенном нерве - 24 пучка.

В дистальных отделах конечностей ветви к мышцам кисти или стопы содержат значительное количество пучков. Например, в ветви локтевого нерва к мышце, приводящей большой палец, содержится 7 пучков, в ветви к четвертой межкостной мышце - 3 пучка, во втором общем пальцевом нерве - 6 пучков.

Внутриствольное сплетение в строении нерва возникает главным образом за счет обмена группами нервных волокон между соседними первичными пучками внутри периневральных оболочек и реже между вторичными пучками, заключенными в эпиневрий.

В строении нервах человека имеется три типа пучков нервных волокон: пучки, выходящие из передних корешков и состоящие из довольно толстых параллельно расположенных волокон, изредка анастомозируют друг с другом; пучки, образующие сложное сплетение благодаря множеству соединений, встречающихся в задних корешках; пучки, выходящие из соединительных ветвей, идут параллельно и не образуют анастомозов.

Приведенные примеры большой изменчивости во внутриствольном строении нерва не исключают некоторой закономерности в распределении проводников в его стволе. При сравнительно-анатомическом исследовании строения грудобрюшного нерва установили, что у собаки, кролика и мыши этот нерв имеет выраженное кабельное расположение пучков; у человека же, кошки, морской свинки преобладает сплетение пучков в стволе этого нерва.

Изучение распределения в строении нерва волокон также подтверждает закономерность в распределении проводников разного функционального значения. Исследование методом перерождения взаимного расположения чувствительных и двигательных проводников в седалищном нерве лягушки показало расположение чувствительных проводников по периферии нерва, а в центре его - чувствительных и двигательных волокон.

Расположение мякотных волокон на разных уровнях в пучках седалищного нерва человека показывает, что образование двигательных и чувствительных ветвей происходит на значительном протяжении нерва путем перехода мякотных волокон разного калибра в определенные группы пучков. Поэтому известные участки нерва имеют топографическое постоянство в отношении распределения пучков нервных волокон, определенного функционального значения.

Таким образом, несмотря на всю сложность, разнообразие и индивидуальную изменчивость во внутриствольном строении нерва, намечается возможность изучения хода проводящих путей нерва. Относительно калибра нервных волокон периферических нервов имеются следующие данные.

Миелин

Миелин – очень важное в строении нервов вещество, имеет жидкую консистенцию и образован смесью очень нестойких веществ, которые подвержены изменению под влиянием различных воздействий. В состав миелина входят белковое вещество нейрокератин, который является склеропротеином, содержит 29% серы, не растворяется в спиртах, кислотах, щелочах и сложная смесь липоидов (собственно миелин), состоящая из лецитина, кефалина, протагона, ацетальфосфатидов, холестерина и небольшого количества веществ белковой природы. При исследовании мякотной оболочки в электронном микроскопе обнаружено, что она образована пластинками разной толщины, лежащими одна над другой, параллельно оси волокна, и образующими концентрические слои. Более толстые слои содержат пластинки, состоящие из липоидов, более тонкими являются лейрокератиновые пластинки. Количество пластинок меняется, в самых толстых мякотных волокнах их может быть до 100; в тонких волокнах, которые считаются безмякотными, они могут быть в количестве 1-2.

Миелин, как жироподобное вещество, окрашивается в бледно-оранжевый цвет, Суданом и осмиевой кислотой - в черный цвет с сохранением прижизненной гомогенной структуры.

После окраски по Вейгерту (хромирование с последующей окраской гематоксилином) мякотные волокна приобретают разные оттенки серо-черного цвета. В поляризованном свете миелин обладает двойным лучепреломлением. Протоплазма шванновской клетки обволакивает мякотную оболочку, переходя на поверхность осевого цилиндра на уровне перехватов Ранвье, где миелин отсутствует.

Аксон

Осевой цилиндр, или аксон, является непосредственным продолжением тела нервной клетки и находится в середине нервного волокна, окружен муфтой из мякотной оболочки в протоплазме шванновской клетки. Он есть основой строения нервов, имеет вид тяжа цилиндрической формы и тянется без перерыва до окончаний в органе или ткани.

Калибр осевого цилиндра колеблется на разных уровнях. В месте выхода из клеточного тела аксон истончается, затем утолщается на месте появления мякотной оболочки. На уровне каждого перехвата снова истончается приблизительно вдвое. Осевой цилиндр содержит многочисленные нейрофибриллы, тянущиеся в длину независимо друг от друга, окутанные перифибриллярным веществом - аксоплазмой. Исследования строения нервов в электронном микроскопе подтвердили прижизненное существование в аксоне субмикроскопических нитей толщиной от 100 до 200 А. Подобные нити имеются и в нервных клетках, и в дендритах. Нейрофибриллы, обнаруживаемые при обычном микроскопировании, возникают благодаря склеиванию субмикроскопических нитей под влиянием фиксирующих веществ, которые сильно сморщивают богатые жидкостью аксоны.

На уровне перехватов Ранвье поверхность осевого цилиндра соприкасается с протоплазмой шванновской клетки, к которой прилегает и ретикулярная оболочка эндоневрия. Этот участок аксона особенно сильно окрашивается метиленовой синью, в области перехватов происходит также активное восстановление азотнокислого серебра с появлением крестов Ранвье. Все это указывает на повышенную проницаемость нервных волокон на уровне перехватов, что имеет значение для обмена веществ и питания волокна.

Рисунок 2. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами).

Нервы отходят от центральной нервной системы. Нерв состоит из длинных пучков нервных волокон. Нервные волокна, какой бы длины они не были, имеют микроскопическую толщину, но иногда она может достигать большой величины. Поперечник седалищного нерва равен 1 см.

Снаружи нерв покрыт соединительнотканной оболочкой белого цвета. На поперечном срезе хорошо заметны перерезанные пучки нервных волокон, окруженные прослойками соединительной ткани, кровеносные сосуды.

Виды нервов

В состав нервов могут входить центробежные или центростремительные нервные волокна, или те и другие вместе. В зависимости от этого различают три вида нервов.

Центростремительные нервы передают возбуждение от органов в центральную нервную систему, информируя ее обо всех изменениях внутри и вне организма. Поэтому их называют еще чувствительными и «осведомительными». Таков, например, слуховой нерв.

Центробежные нервы проводят импульсы от центральной нервной системы к органам. Их называют двигательными, «командными». Примером может служить глазодвигательный нерв.

Смешанные нервы составляют большинство нервов тела человека. Так, все спинномозговые нервы состоят из чувствительных (центростремительных) и двигательных (центробежных) нервных волокон. По ним импульсы движутся одновременно и центробежно и центростремительно, но только по одноименным нервным волокнам.

Нервный центр

Определенные участки нейтральной нервной системы, управляющие какой-либо деятельностью организма, называют нервными центрами. Каждый нервный центр представляет собой несколько групп нейронов и нервных волокон. Все вместе они обеспечивают нормальное осуществление тех или иных функциорганизма. Так, у человека есть центры речи, письма дыхания и др.

«Анатомия и физиология человека», М.С.Миловзорова

Вегетативная нервная система является частью нервной системы. Ее работа подчинена центральной нервной системе. Центры вегетативной нервной системы расположены в головном и спинном мозге. Волокна вегетативной нервной системы входят в состав спинно-мозговых и черепно-мозговых нервов. Они иннервируют все без исключения органы тела. К некоторым органам подходят по два вегетативных нерва: симпатически и парасимпатический. Как правило, они…

Вегетативные нервные волокна, выйдя из центральной нервной системы, не доходят сразу до органа, а заканчиваются в узлах. Эти волокна называются предузловыми (2). В узлах находятся нейроны (1), отростки которых образуют послеузловые волокна (3), закапчивающиеся в органах. Предузловые волокна в узлах вступают в контакт с несколькими послеузловыми, а они разветвляются, иннервируя сразу несколько органов. Поэтому возбуждение, возникающее…

Прежде считали, что вегетативная нервная система оказывает влияние только на внутренности — «органы растительной жизни». Отсюда и возникло название — «вегетативная». На самом же деле она иннервирует и скелетную мускулатуру. Активная мышечная работа предъявляет большие требования к организму в целом. Мышцам необходим усиленный приток кислорода, сахара и других веществ, из них должны быстро удаляться продукты распада. Вегетативная нервная…

От нервных клеток, находящихся в головном и спинном мозгу, отходят отростки, которые и являются нервными волокнами, идущими к периферии. Нервные волокна собираются в пучки разной толщины. Такое скопление нервных волокон называется нервом.

Нервы осуществляют связь между центральной нервной системой и отдельными органами нашего тела. По нервам возбуждение идет либо из центральной нервной системы к рабочему органу, либо от разных участков нашего тела в центральную нервную систему.

Нервы делятся на две группы в зависимости от того, в каком направлении они проводят возбуждение.

Рис. Схема распространения возбуждения при раздражении нерва

Одна группа нервов проводит возбуждение из центральной нервной системы к рабочим органам. Они называются эфферентными (центробежными, или двигательными) нервами. Другая группа проводит возбуждение с разных участков нашего тела и от разных органов в центральную нервную систему. В отличие от предыдущей группы нервов они получили название афферентных (центростремительных, или чувствительных) нервов. Оба рода нервных волокон часто идут в одном стволе, поэтому большинство нервов являются смешанными.

СТРОЕНИЕ НЕРВА

Состоит из нервных клеток, которые называются нейронами. Нейрон состоит из тела нервной клетки и ее отростков. Различают два вида отростков: а) отростки короткие, ветвистые - дендриты, и б) очень длинный отросток, который тянется от центральной нервной системы до рабочего органа,- а к с о н, который участвует в формировании нервов.

Наконец, имеются еще и особые образования на окончаниях нервов- так называемые концевые аппараты, при помощи которых осуществляется связь нервного волокна с мышцей, железой или другими органами, или рецепторы - окончания центростремительных нервов, воспринимающие раздражение.

Короткие отростки - дендриты - осуществляют связь между отдельными нервными клетками и почти не выходят за пределы центральной нервной системы.

Аксон же тянется из головного или спинного мозга до рабочего органа. Нервы, которые мы встречаем в организме, состоят из аксонов, несущих возбуждение в центральную нервную систему или, наоборот, из центральной нервной системы.

Нормальное протекание обмена веществ во всех отростках нервной клетки связано с ее целостностью. В этом можно убедиться, если перерезать нервное волокно и тем самым нарушить его связь с телом клетки. Деятельность такого волокна нарушается, и та часть, которая отрезана от клетки, отмирает. Совершенно иные явления наблюдаются в той части волокна, которая осталась связанной с телом клетки. Эта часть продолжает жить, нормально функционирует, не нарушен. Более того, такой отрезок растет и через некоторое, время может дойти до мышцы, чем и восстановится целость, нерва. Этим объясняется наблюдающееся иногда восстановле ние движений парализованной конечности через определенный промежуток времени, если паралич был вызван поражением нерва.

Такой особенностью пользуются и хирурги, которые часто производят сшивание нервов с целью восстановления деятельности парализованного органа.

Нервная возбуждается под влиянием тех волн возбуждения, которые поступают с периферии по центростремительным нервам. Однако многие нервные клетки могут возбуждаться даже без поступления импульсов с рецепторов. В этих клетках возбуждение может возникнуть под влиянием гуморальных воздействий. Примером может служить деятельность теплового центра, на функции которого влияет температура крови, и др.

СВОЙСТВА НЕРВНОГО ВОЛОКНА

Нервное волокно обладает возбудимостью и проводимостью. В этом можно убедиться, если нанести электрическое раздражение какому-либо участку нерва нервно-мышечного препарата. Почти тотчас после нанесения раздражения мышца сокращается. Сокращение мышцы стало возможным потому, что при раздражении в нерве возникло возбуждение, которое, пройдя по нерву, поступило к мышце и обусловило ее деятельность.

Для проведения возбуждения необходима анатомическая целость нервного волокна. Перерезка нерва делает невозможной передачу возбуждения. Возбуждение не проводится в случае перевязки, сдавливания или нарушения целости нерва любым иным способом. Однако не только анатомические, но и физиологические нарушения вызывают прекращение про ведения. Нерв может быть целым, но он не будет проводить возбуждения, так как его функ ции нарушены.

Нарушение проведения мож но наблюдать при охлаждении или нагревании нерва, прекращении его кровоснабжения, от равлении и т. д.

Проведение возбуждения по нерву подчиняется двух основ ным законам.

1. Закон двустороннего проведения . Нервное волокно обладает способностью проводить возбуждение по двум направлениям: центростремительно и центробежно. Независимо от того, какое это нервное волок но - центробежное или центростремительное, если ему нанести раздражение, возникшее возбуждение будет распространяться в обе стороны от места раздражения (рис.). Это свойство нервного волокна впервые открыл выдающийся русский ученый Р. И. Бабухин (1877).

2. Закон изолированного проведения. Периферический нерв состоит из большого числа отдельных нервных волокон, которые вместе идут в одном и том же нервном стволе. В нервном стволе одновременно могут проходить самые разнообразные центробежные и центростремительные нервные волокна. Однако возбуждение, которое передается по одному нервному волокну, не передается на соседние. Благодаря такому изолированному проведению возбуждения по нервному волокну возможны отдельные весьма тонкие движения человека. Художник может создавать свои полотна, музыкант - исполнять сложные музыкальные произведения, хирург - производить тончайшие операции потому, что каждое волокно изолированно передает импульс мышце, и тем самым центральная имеет возможность координировать мышечные сокращения. Если бы возбуждение могло переходить на другие волокна, стало бы невозможным отдельное мышечное сокращение, каждое возбуждение сопровождалось бы сокращением самых разнообразных мышц.