Главная · Аппендицит · Механизмы терморегуляции человека. Механизмы терморегуляции тела Механизмы терморегуляции организма человека

Механизмы терморегуляции человека. Механизмы терморегуляции тела Механизмы терморегуляции организма человека

Ареал проживания человека распространяется от полюсовых зон, где температура воздуха порой достигает -86°С, до экваториальных саванн и пустынь, в наиболее жарких участках которых она приближается к +50°С в тени! Тем не менее в таком широком диапазоне температур человек сохраняет активную жизнеспособность и достаточную работоспособность благодаря своей термостабильности, когда температура тела колеблется в относительно узких границах – от 36 до 37°С.

Гомойотермия – постоянство температуры тела – делает человека независимым от температурных условий проживания, так как обеспечивающие его жизнедеятельность биохимические реакции продолжают осуществляться на оптимальном уровне благодаря сохранению адекватной активности обеспечивающих их тканевых ферментов и витаминов, катализирующих и активирующих отдельные стороны обмена веществ, тканевых гормонов, нейромедиаторов и других веществ, от которых зависит нормальная деятельность организма. Смещение же температуры в ту или иную сторону резко меняет активность этих веществ, причем в разной степени для каждого из них – в результате наступает разобщение в активности протекания отдельных сторон обмена веществ. У животных пойкилотермных, холоднокровных, температура тела которых определяется окружающей температурой (повышается или понижается вместе с последней), активность их тканевых ферментов как биологических катализаторов меняется вместе с изменением внешних тепловых условий. Вот почему при снижении температуры степень проявления их жизнедеятельности снижается вплоть до полной остановки – так называемый анабиоз, а при очень высокой – либо наступает смерть, либо высушивание, которое у некоторых из пойкилотермов является также разновидностью анабиоза. Так, с изменением внешней температуры жизнедеятельность некоторых насекомых (саранча) может восстанавливаться как после замерзания до температуры жидкого азота (–189°С), так и после высушивания. Описан случай оживления, хотя и кратковременного, гигантского тритона, замерзшего в леднике, по мнению специалистов, по крайней мере около 5000 лет назад.

Таким образом, способность сохранять неизменной температуру тела при различных условиях существования делает теплокровных независимыми от обстоятельств природы и способными сохранять высокий уровень жизнеспособности. Такая способность обусловлена сложной системой терморегуляции, обеспечивающей уменьшение выработки тепла и активную его отдачу при опасности перегревания и активизацию термогенеза при ограничении отдачи тепла – при опасности переохлаждения.

Статистика показывает, что в России из всех случаев временной утраты трудоспособности более 40% приходится на простудные заболевания, что дает основание обывателю считать систему терморегуляции несовершенной. Однако есть много фактов, указывающих на высокую природную устойчивость человека к действию низких температур. Так, йоги-респы соревнуются при температуре ниже –20°С в скорости высушивания мокрых простыней теплом своего тела, сидя нагишом на льду замерзшего озера. Стали традиционными проплывы специально подготовленных пловцов через Берингов пролив из Аляски на Чукотку (более 40 км) при температуре воды +4°С – +6°С. Якуты натирают новорожденных снегом, а остяки и тунгусы погружают их в снег, обливают холодной водой и затем закутывают в оленьи шкуры... В таком случае, по-видимому, скорее следует говорить об извращении совершенных механизмов терморегуляции человека далекими от сформировавших их в эволюции условиями жизни современного человека, чем о несовершенстве самих механизмов.

В то время как большинство функций жизнедеятельности – кровообращение, дыхание, пищеварение и др. – имеют какой-либо специфический структурно-функциональный аппарат, терморегуляция такого органа не имеет и является функцией всего организма в целом.

Согласно предложенной И. П. Павловым схеме, организм теплокровного можно представить в виде относительно термостабильного «ядра» и имеющей большой разброс температур «оболочки». Ядро, температура которого колеблется в пределах 36,8–37,5°С, включает преимущественно жизненно важные внутренние органы: сердце, печень, желудок, кишечник и т.д. Особенно следует отметить роль печени, имеющей относительно высокую температуру – выше 37,5°С, и толстого кишечника, микрофлора которого в процессе своей жизнедеятельности вырабатывает много тепла, обеспечивающего поддержание температуры прилежащих тканей. Термолабильную оболочку составляют конечности, кожные и подкожные ткани, мышцы и т.д. Температура различных участков оболочки колеблется в широких пределах. Так, температура пальцев ног составляет около 24°С, голеностопного сустава – 30–31°С, кончика носа – 25°С, подмышечной впадины, прямой кишки – 36,5–36,9°С и т.д. Однако температура оболочки очень подвижна, что определяется условиями жизнедеятельности и состоянием организма, поэтому и толщина ее может меняться от очень тонкой при жаре до очень мощной, сжимающей ядро – при холоде. Такие взаимоотношения ядра и оболочки обусловлены тем, что первая преимущественно производит тепло (в покое), а вторая – должна обеспечивать сохранение этого тепла. Именно этим объясняетсятообстоятельство, что у закаленных людей оболочка на холоде быстро и надежно обволакивает ядро, сохраняя оптимальные условия для поддержания деятельности жизненно важных органов и систем, а у незакаленных оболочка и в этих условиях остается тонкой, создавая угрозу переохлаждения ядра (так, при снижении температуры легких всего лишь на 0,5°С возникает угроза пневмонии).

Термостабильность организма обеспечивается в основном двумя взаимодополняющими механизмами регуляции – физическим и химическим.Физическая терморегуляция преимущественно активизируется при опасности перегревания и заключается в отдаче тепла в окружающую среду. При этом включаются все возможные механизмы теплоотдачи: теплоизлучение, теплообмен, конвекция и испарение. Теплоизлучение осуществляется за счет инфракрасных лучей, исходящих от имеющей высокую температуру кожи. Теплопроведение реализуется за счет разницы температур между кожей и окружающим воздухом. Увеличение этой разницы осуществляется за счет гиперемии – расширения кожных сосудов и притока сюда большего количества теплой крови от внутренних органов, из-за чего и окраска кожи при жаре становится розовой. При этом эффективность теплоотдачи определяется теплопроводностью и теплоемкостью внешней среды: так, эти показатели в соответствующих температурах для воды в 20–27 раз выше, чем воздуха. Отсюда становится понятным почему термокомфортная температура воздуха для человека составляет около 18°С, а воды – 34°С. Теплоотдача за счет испарения пота является весьма эффективной, так как при испарении 1 мл пота с поверхности тела организм теряет 0,56 ккал тепла. Если учесть, что взрослый человек вырабатывает даже в условиях низкой двигательной активности около 800 мл пота, то становится понятной эффективность этого способа.

В различных условиях жизнедеятельности соотношение потерь тепла тем или иным способом заметно меняется. Так, в покое и при оптимальной температуре воздуха организм 31% образующегося тепла теряет проведением, 44% – излучением, 22% – испарением (в том числе и за счет влаги с дыхательных путей) и 3% – конвекцией. При сильном ветре возрастает роль конвекции, при повышении влажности воздуха – проведения, а при усиленной работе – испарения (например, при напряженной двигательной активности испарение пота порой достигает 3–4-х литров в час!).

Эффективность теплоотдачи организма исключительно высока. Биофизические расчеты показывают, что нарушение этих механизмов даже у находящегося в покое человека привело бы к повышению температуры его тела в течении часа до 37,5°С, а через 6 часов – до 46–48°С, когда начинается необратимое разрушение белковых структур.

Химическая терморегуляция приобретает особое значение при опасности переохлаждения организма. Потеря человеком относительно животных шерстяного покрова сделала его особенно чувствительным к действию низких температур, о чем свидетельствует тот фактор, что у человека холодовых рецепторов почти в 30 раз больше, чем тепловых. Вместе с тем совершенствование механизмов адаптации к холоду привело к тому, что снижение температуры тела человек переносит гораздо легче, чем ее повышение. Так, грудные дети легко переносят снижение температуры тела на 3–5°С, но тяжело – повышение на 1–2°С. Взрослый человек без каких-либо последствий переносит переохлаждение до 33–34°С, но теряет сознание при перегревании от внешних источников до 38,6°С, хотя при лихорадке от инфекции может сохранить сознание и при 42°С. Вместе с тем отмечены случаи оживления замерзших людей, температура кожи которых опускалась ниже точки замерзания.

Суть химической терморегуляции заключается в изменении активности обменных процессов в организме: при высокой внешней температуре она снижается, а при низкой – возрастает. Исследования показывают, что при снижении окружающей температуры на 1°С у обнаженного человека в покое активность метаболизма возрастает на 10%. (Однако выключение наркозом и так называемыми нейролептиками высших регуляторных механизмов термостабильности у теплокровных делает их зависимыми от окружающей температуры, и при охлаждении температуры их тела до 32°С потребление ими кислорода снижается до 50%, при 20°С –до 20%, а при +1°С –до 1% от исходного уровня.)

Особое значение для поддержания температуры тела играет тонус скелетных мышц, который возрастает при снижении окружающей температуры и снижается – при потеплении. Показательно, что эти процессы протекают тем активнее, чем опаснее грозящее нарушение термостабильности. Так, при температуре воздуха 25–28°С (и особенно в сочетании с высокой влажностью) мышцы в значительной степени расслаблены, и воспроизводимая ими тепловая энергия ничтожна. Наоборот, при опасности переохлаждения все большее значение приобретает дрожь – нескоординированные сокращения мышечных волокон, когда внешняя механическая работа практически полностью отсутствует, и почти вся энергия сокращающихся волокон переходит в тепловую энергию (это явление получило название несократительного термогенеза). Нет ничего удивительного поэтому в том, что при дрожи теплопродукция организма может возрасти более чем в три раза, а при напряженной физической работе – в 10 и более раз.

Несомненное значение в химической терморегуляции играют и легкие, которые за счет изменения активности обмена входящих в их структуру высококалорийных жиров поддерживают относительно постоянную свою температуру, – именно поэтому при высокой внешней температуре оттекающая от легких кровь прохладнее, а при низкой – теплее вдыхаемого воздуха.

Физический и химический механизмы терморегуляции работают с высокой степенью согласования благодаря наличию в ЦНС соответствующего центра в области промежуточного мозга (гипоталамус).Вот почему при высокой температуре окружающей среды, с одной стороны, усиливается теплоотдача (за счет повышения температуры кожи, активизации дыхания, усиления процессов испарения пота и т.д.), а с другой – снижается теплопродукция (за счет снижения тонуса мышц, перехода к усвоению организмом менее энергосодержащих продуктов); при низких же температурах – наоборот: возрастает теплопродукция и снижается теплоотдача.

Таким образом, совершенные механизмы терморегуляции человека позволяют поддерживать оптимальную жизнеспособность в широком диапазоне внешних температур.

Человеческое тело может сохранять жизнеспособность в довольно небольшом диапазоне внутренних температур – от +25 до +43 градусов. Способность их поддерживать в указанных границах даже при значительных изменениях внешних условий называется терморегуляцией. Физиологическая норма при этом находится в пределах от 36,2 до 37 градусов, отклонения от нее считаются нарушением. Для выяснения причин подобных патологий необходимо знать, как осуществляется терморегуляция в организме, какие факторы влияют на колебания внутренних температур, выяснить методы их коррекции.

Как осуществляется терморегуляция в организме человека?

  1. Химическая терморегуляция – процесс производства тепла. Оно вырабатывается всеми органами в теле, особенно при прохождении сквозь них крови. Больше всего энергии продуцируется в печени и поперечнополосатых мышцах.
  2. Физическая терморегуляция – процесс отдачи тепла. Он осуществляется с помощью непосредственного теплообмена по отношению к воздуху или холодным предметам, инфракрасного излучения, а также испарения пота с поверхности кожи и дыхания.

Как терморегуляция поддерживается в организме человека?

Контроль внутренней температуры происходит за счет чувствительности специальных терморецепторов. Их большая часть располагается в коже, верхних дыхательных путях и слизистых оболочках ротовой полости.

При отклонении внешних условий от нормы терморецепторы производят нервные импульсы, которые поступают в спинной мозг, затем в зрительные бугры, гипоталамус, гипофиз и достигают коры головного мозга. В результате появляется физическое ощущение холода или жара, а центр терморегуляции стимулирует процессы продуцирования или отдачи тепла.

Стоит заметить, что в описанном механизме, в частности – образования энергии, также принимают участие некоторые гормоны. Тироксин интенсифицирует обмен веществ, из-за чего повышается продуцирование тепла. действует аналогично за счет усиления окислительных процессов. Кроме того, он способствует сужению кровеносных сосудов в коже, что препятствует отдаче тепла.

Причины нарушения терморегуляции организма

Незначительные изменения в соотношении производства тепловой энергии и ее передачи во внешнюю среду происходят при физических нагрузках. В данном случае это не является патологией, так как процессы терморегуляции быстро восстанавливаются в состоянии покоя, во время отдыха.

Большую часть рассматриваемых нарушений составляют системные заболевания, сопровождающиеся воспалительными процессами. Однако в подобных ситуациях даже сильное повышение температуры тела некорректно называть патологическим, так как жар и лихорадка возникают в организме для подавления размножения патогенных клеток (вирусов или бактерий). По сути, данный механизм является нормальной защитной реакцией иммунитета.

Истинные нарушения терморегуляции сопровождают повреждения органов, ответственных за ее осуществление, гипоталамуса, гипофиза, спинного и головного мозга. Это происходит при механических травмах, кровоизлияниях, образовании опухолей. Дополнительно усилить патологию могут заболевания эндокринной и сердечно-сосудистой системы, гормональные расстройства, физическое или перегрев.

Лечение нарушения нормальной терморегуляции в организме человека

Восстановить корректное протекание механизмов производства и отдачи тепла можно только после установления причин их изменений. Для постановки диагноза необходимо посетить невролога, сдать ряд лабораторных анализов и выполнить назначенные инструментальные исследования.

Ареал проживания человека распространяется от полюсовых зон, где температура воздуха порой достигает -86°С, до экваториальных саванн и пустынь, в наиболее жарких участках которых она приближается к +50°С в тени! Тем не менее в таком широком диапазоне температур человек сохраняет активную жизнеспособность и достаточную благодаря своей термостабильности, когда температура тела колеблется в относительно узких границах – от 36 до 37°С.

Гомойотермия – постоянство температуры тела – делает человека независимым от температурных условий проживания, так как обеспечивающие его жизнедеятельность биохимические реакции продолжают осуществляться на оптимальном уровне благодаря сохранению адекватной активности обеспечивающих их тканевых ферментов и витаминов, катализирующих и активирующих отдельные стороны обмена веществ, тканевых гормонов, нейромедиаторов и других веществ, от которых зависит нормальная деятельность организма. Смещение же температуры в ту или иную сторону резко меняет активность этих веществ, причем в разной степени для каждого из них – в результате наступает разобщение в активности протекания отдельных сторон обмена веществ. У животных пойкилотермных, холоднокровных, температура тела которых определяется окружающей температурой (повышается или понижается вместе с последней), активность их тканевых ферментов как биологических катализаторов меняется вместе с изменением внешних тепловых условий. Вот почему при снижении температуры степень проявления их жизнедеятельности снижается вплоть до полной остановки – так называемый анабиоз, а при очень высокой – либо наступает смерть , либо высушивание, которое у некоторых из пойкилотермов является также разновидностью анабиоза. Так, с изменением внешней температуры жизнедеятельность некоторых насекомых (саранча) может восстанавливаться как после замерзания до температуры жидкого азота (–189°С), так и после высушивания. Описан случай оживления, хотя и кратковременного, гигантского тритона, замерзшего в леднике, по мнению специалистов, по крайней мере около 5000 лет назад.

Таким образом, способность сохранять неизменной температуру тела при различных условиях существования делает теплокровных независимыми от обстоятельств природы и способными сохранять высокий уровень жизнеспособности. Такая способность обусловлена сложной системой терморегуляции, обеспечивающей уменьшение выработки тепла и активную его отдачу при опасности перегревания и активизацию термогенеза при ограничении отдачи тепла – при опасности переохлаждения.

Статистика показывает, что в России из всех случаев временной утраты трудоспособности более 40% приходится на простудные заболевания, что дает основание обывателю считать систему терморегуляции несовершенной. Однако есть много фактов, указывающих на высокую природную устойчивость человека к действию низких температур . Так, йоги-респы соревнуются при температуре ниже –20°С в скорости высушивания мокрых простыней теплом своего тела, сидя нагишом на льду замерзшего озера. Стали традиционными проплывы специально подготовленных пловцов через Берингов пролив из Аляски на Чукотку (более 40 км) при температуре воды +4°С – +6°С. Якуты натирают новорожденных снегом, а остяки и тунгусы погружают их в снег, обливают холодной водой и затем закутывают в оленьи шкуры... В таком случае, по-видимому, скорее следует говорить об извращении совершенных механизмов терморегуляции человека далекими от сформировавших их в эволюции условиями жизни современного человека, чем о несовершенстве самих механизмов.

В то время как большинство функций жизнедеятельности – кровообращение, дыхание, и др. – имеют какой-либо специфический структурно-функциональный аппарат, терморегуляция такого органа не имеет и является функцией всего организма в целом.

Согласно предложенной И. П. Павловым схеме, организм теплокровного можно представить в виде относительно термостабильного «ядра» и имеющей большой разброс температур «оболочки». Ядро, температура которого колеблется в пределах 36,8–37,5°С, включает преимущественно жизненно важные внутренние органы: сердце, печень, желудок, кишечник и т. д. Особенно следует отметить роль печени, имеющей относительно высокую температуру – выше 37,5°С, и толстого кишечника, микрофлора которого в процессе своей жизнедеятельности вырабатывает много тепла, обеспечивающего поддержание температуры прилежащих тканей. Термолабильную оболочку составляют конечности, кожные и подкожные ткани, мышцы и т. д. Температура различных участков оболочки колеблется в широких пределах. Так, температура пальцев ног составляет около 24°С, голеностопного сустава – 30–31°С, кончика носа – 25°С, подмышечной впадины, прямой кишки – 36,5–36,9°С и т. д. Однако температура оболочки очень подвижна, что определяется условиями жизнедеятельности и состоянием организма, поэтому и толщина ее может меняться от очень тонкой при жаре до очень мощной, сжимающей ядро – при холоде. Такие взаимоотношения ядра и оболочки обусловлены тем, что первая преимущественно производит тепло (в покое), а вторая – должна обеспечивать сохранение этого тепла. Именно этим объясняется то обстоятельство, что у закаленных людей оболочка на холоде быстро и надежно обволакивает ядро, сохраняя оптимальные условия для поддержания деятельности жизненно важных органов и систем, а у незакаленных оболочка и в этих условиях остается тонкой, создавая угрозу переохлаждения ядра (так, при снижении температуры легких всего лишь на 0,5°С возникает угроза пневмонии).

Термостабильность организма обеспечивается в основном двумя взаимодополняющими механизмами регуляции – физическим и химическим. Физическая терморегуляция преимущественно активизируется при опасности перегревания и заключается в отдаче тепла в окружающую среду. При этом включаются все возможные механизмы теплоотдачи: теплоизлучение, теплообмен, конвекция и испарение. Теплоизлучение осуществляется за счет инфракрасных лучей, исходящих от имеющей высокую температуру кожи. Теплопроведение реализуется за счет разницы температур между кожей и окружающим воздухом. Увеличение этой разницы осуществляется за счет гиперемии – расширения кожных сосудов и притока сюда большего количества теплой крови от внутренних органов, из-за чего и окраска кожи при жаре становится розовой. При этом эффективность теплоотдачи определяется теплопроводностью и теплоемкостью внешней среды: так, эти показатели в соответствующих температурах для воды в 20–27 раз выше, чем воздуха. Отсюда становится понятным почему термокомфортная температура воздуха для человека составляет около 18°С, а воды – 34°С. Теплоотдача за счет испарения пота является весьма эффективной, так как при испарении 1 мл пота с поверхности тела организм теряет 0,56 ккал тепла. Если учесть, что взрослый человек вырабатывает даже в условиях низкой двигательной активности около 800 мл пота, то становится понятной эффективность этого способа.

В различных условиях жизнедеятельности соотношение потерь тепла тем или иным способом заметно меняется. Так, в покое и при оптимальной температуре воздуха организм 31% образующегося тепла теряет проведением, 44% – излучением, 22% – испарением (в том числе и за счет влаги с дыхательных путей) и 3% – конвекцией. При сильном ветре возрастает роль конвекции, при повышении влажности воздуха – проведения, а при усиленной работе – испарения (например, при напряженной двигательной активности испарение пота порой достигает 3–4-х литров в час!).

Эффективность теплоотдачи организма исключительно высока. Биофизические расчеты показывают, что нарушение этих механизмов даже у находящегося в покое человека привело бы к повышению температуры его тела в течении часа до 37,5°С, а через 6 часов – до 46–48°С, когда начинается необратимое разрушение белковых структур.

Химическая терморегуляция приобретает особое значение при опасности переохлаждения организма. Потеря человеком относительно животных шерстяного покрова сделала его особенно чувствительным к действию низких температур, о чем свидетельствует тот фактор, что у человека холодовых рецепторов почти в 30 раз больше, чем тепловых. Вместе с тем совершенствование механизмов адаптации к холоду привело к тому, что снижение температуры тела человек переносит гораздо легче, чем ее повышение. Так, грудные дети легко переносят снижение температуры тела на 3–5°С, но тяжело – повышение на 1–2°С. Взрослый человек без каких-либо последствий переносит переохлаждение до 33–34°С, но теряет сознание при перегревании от внешних источников до 38,6°С, хотя при лихорадке от инфекции может сохранить сознание и при 42°С. Вместе с тем отмечены случаи оживления замерзших людей, температура кожи которых опускалась ниже точки замерзания.

Суть химической терморегуляции заключается в изменении активности обменных процессов в организме: при высокой внешней температуре она снижается, а при низкой – возрастает. Исследования показывают, что при снижении окружающей температуры на 1°С у обнаженного человека в покое активность метаболизма возрастает на 10%. (Однако выключение наркозом и так называемыми нейролептиками высших регуляторных механизмов термостабильности у теплокровных делает их зависимыми от окружающей температуры, и при охлаждении температуры их тела до 32°С потребление ими кислорода снижается до 50%, при 20°С –до 20%, а при +1°С –до 1% от исходного уровня.)

Особое значение для поддержания температуры тела играет тонус скелетных мышц, который возрастает при снижении окружающей температуры и снижается – при потеплении. Показательно, что эти процессы протекают тем активнее, чем опаснее грозящее нарушение термостабильности. Так, при температуре воздуха 25–28°С (и особенно в сочетании с высокой влажностью) мышцы в значительной степени расслаблены, и воспроизводимая ими тепловая энергия ничтожна. Наоборот, при опасности переохлаждения все большее значение приобретает дрожь – нескоординированные сокращения мышечных волокон, когда внешняя механическая работа практически полностью отсутствует, и почти вся энергия сокращающихся волокон переходит в тепловую энергию (это явление получило название несократительного термогенеза). Нет ничего удивительного поэтому в том, что при дрожи теплопродукция организма может возрасти более чем в три раза, а при напряженной физической работе – в 10 и более раз.

Несомненное значение в химической терморегуляции играют и легкие, которые за счет изменения активности обмена входящих в их структуру высококалорийных жиров поддерживают относительно постоянную свою температуру, – именно поэтому при высокой внешней температуре оттекающая от легких кровь прохладнее, а при низкой – теплее вдыхаемого воздуха.

Физический и химический механизмы терморегуляции работают с высокой степенью согласования благодаря наличию в ЦНС соответствующего центра в области промежуточного мозга (гипоталамус). Вот почему при высокой температуре окружающей среды, с одной стороны, усиливается теплоотдача (за счет повышения температуры кожи, активизации дыхания, усиления процессов испарения пота и т. д.), а с другой – снижается теплопродукция (за счет снижения тонуса мышц, перехода к усвоению организмом менее энергосодержащих продуктов); при низких же температурах – наоборот: возрастает теплопродукция и снижается теплоотдача.

Таким образом, совершенные механизмы терморегуляции человека позволяют поддерживать оптимальную жизнеспособность в широком диапазоне внешних температур.

Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла телом.

Для поддержания постоянства температуры тела при повышении температуры внешней среды особенно важная роль принадлежит физической терморегуляции . Если температура окружающей среды иприближается или становится равной температуре тела, обмен веществ понижается, но это не может предохранить организм от перегревания, так как в организме все же происходит значительное теплообразование. В этих случаях основное значение для сохранения изотермии имеет физическая терморегуляция, осуществляемая путем усиления теплоотдачи. Образующееся в организме тепло выделяется преимущественно путем теплоизлучения (paдиационная теплоотдача) и теплопроведения (конвекционная теплоотдача). т. е. путем его непосредственной отдачи кожей воздуху и тем предметам, с кооторыми кожа соприкасается. Теплопроведение и теплоизлучение вместе в состоянии покоя составляют около 70% всей теплоотдачи взрослого человека (теплоизлучение - 55 %, теплопроведение - около 15%).

При обычных условиях в отсутствие активной работы около 27% тепла отдается телом путем испарения воды с поверхности кожи и легких. Если учесть, что потовые железы выделяют в сутки около 500 мл, а легкие- около 350 мл воды и что испарение 1 мл воды требует 0,58 ккал, то на испарение воды телом затрачивается около 500 ккал. 3% отдаваемого телом тепла уходят на нагревание выдыхаемого воздуха и выделенного кала и мочи.

Одежда служит человеку средством для уменьшения теплоотдачи. При этом потере тепла препятствует тот слой неподвижного воздуха, который находится между одеждой и кожей, так как воздух - плохой проводник тепла. Температура воздуха под одеждой достигает 30°. Напротив, обнаженное тело теряет тепло, потому что воздух на его поверхности все время сменяется. Поэтому температура кожи на обнаженных частях тела значительно ниже, чем на одетых.

В значительной степени препятствует теплоотдаче слой подкожной жировой клетчатки в связи с малой теплопроводностью жира.

Теплоизлучение и теплопроведенне можно рассматривать вместе, так как они всегда изменяются параллельно и зависят от одного и того же фактора: разности температур кожи и окружающей среды. Температура кожи, следовательно, и интенсивность теплоизлучения и теплопроведения, может изменяться, во-первых, при перераспределении крови в сосудах, во-вторых, при изменении количества циркулирующей крови.

Перераспределение крови и разных сосудистых областях происходит следующим образом: на холоду кровеносные сосуды кожи, главным образом арториолы, суживаются, и большее количество крови поступает в сосуды органов брюшной полости. Поверхностные слои кожи, получая меньшей теплой крови, излучают меньше тепла и меньше нагревают окружающую среду - теплоотдача уменьшается. При сильном охлаждении конечностей происходит, кроме того, открытие артерио-венозных анастомозов, что уменьшает количество крови, поступающее в капилляры кожи и препятствует тем самым теплоотдаче.

При высокой температуре окружающей среды сосуды кожи расширяются, теплая кровь приливает к коже, температура ее повышается, поэтому повышается и излучение, и проведение тепла.

Увеличение количества циркулирующей крови при высокой температуре окружающей среды достигается путем перехода воды из тканей в кровь, а также тем, что селезенка и другие кровяные депо выбрасывают в общую циркуляцию дополнительные количества крови. На холоду вследствие противоположных процессов количество циркулирующей крови значительно уменьшается. При увеличении количества циркулирующей крови увеличивается, конечно, и количество крови, проходящей через кожу, что повышает отдачу кожей тепла в окружающую среду.

Для сохранения постоянства температуры тела человека при высокой температуре окружающей среды весьма большое значение имеет испарение с поверхности кожи. Таким путем организм отдает при высокой температуре очень большие количества тепла.

Значение потоотделения для поддержания постоянства температуры хорошо видно из следующего подсчета: в тропиках температура окружающего воздуха нередко достигает 37°, т. е. равна температуре тела ка. Это значит, что организм человека, живущего в этих условиях, не может отдавать образующееся в нем самом тепло путем теплоизлучения и теплопроведения. Единственным путем для отдачи тепла является испарение воды. Считая среднее теплообразование в сутки равным 2400- ккал и зная, что на испарение 1 г воды с поверхности тела расходуется ккал, получаем, что для удержания температуры тела человека на постоянном уровне при этих условиях необходимо испарение 4,5 л воды Особенно интенсивное потоотделение происходит при высокой окружающей температуре в условиях мышечной работы, когда возрастает теплообразование в самом организме. При очень тяжелой работе выделение пота к рабочих горячих цехов может составить до 12 л за день.

Испарение воды зависит от относительной влажности воздуха и в насыщенном водяными парами воздухе совершаться не может. Поэтому высокая температура при высокой влажности атмосферы переносится тяжелее, чем при низкой влажности. В насыщенном водяными парами воздухе, например в бане, пот выделяется в большом количестве, но неиспаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла; только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет «эффективное потоотделение»).

Плохо переносится также непроницаемая для воздуха одежда (кожаная, резиновая), препятствующая испарению пота: слой воздуха между одеждой и телом быстро насыщается парами и дальнейшее испарение пота прекращается.

Значение испарения пота с поверхности тела для поддержания постоянства температуры тела видно из того, что человек плохо переносит даже сравнительно низкую температуру окружающей среды (32°), если воздух влажен. В совершенно сухом воздухе человек может находиться без заметного перегревания в течение 2-3 часов при температуре 50-55°.

Некоторая часть воды испаряется легкими в виде паров, насыщающих выдыхаемый воздух. Поэтому дыхание также участвует в удержании температуры тела на постоянном уровне. На холоду дыхательный центр рефлекторно угнетается, дыхание становится реже, наоборот при высокой окружающей температуре дыхательный центр возбуждается.

Из всего изложенного следует, что регуляция температуры тела осуществляется путем совместного действия, с одной стороны, механизмов,. регулирующих интенсивность обмена веществ и зависящее от него теплообразование (химическая регуляция тепла), а с другой стороны, механизмов, регулирующих кровоснабжение кожи, потоотделение и дыхание (физическая регуляция тепла).

Вопрос 1. Что такое терморегуляция?

Терморегуляция – совокупность физиологических процессов в организме человека и теплокровных животных, направленных на поддержание постоянной температуры тела.

Вопрос 2. Почему терморегуляция необходима организму?

Терморегуляция имеет важное значение. При понижении температуры тела происходит усиление теплообразования (при отклонении от оптимальной температуры). При охлаждении у человека, благодаря действию на холодовые рецепторы, появляется дрожь, которая представляет собой беспорядочное непроизвольное сокращение мышц. Благодаря дрожи повышаются энергетические затраты, что влечёт за собой повышение теплообразования и соответственно температуры тела.

При повышении температуры окружающей среды кровеносные сосуды кожи расширяются, через них протекает больше крови, кожа нагревается, отдача тепла в окружающую среду увеличивается.

Вопрос 3. Каковы механизмы терморегуляции?

Кровеносные сосуды пронизывают все наше тело, проникая в мышцы, печень и другие органы, где образуется тепло. Кровь в этих органах нагревается и, перетекая по сосудам в другие части тела, отдает часть своего тепла. Так кровь разносит тепло по организму, как бы выравнивая температуру внутри тела.

Вопрос 4. Какова температура тела человека?

И зимой и летом температура на поверхности кожи здорового человека составляет 36,6 °С, а естественные колебания ее не превышают 2 °С.

Вопрос 5. Как изменяется просвет кровеносных сосудов при изменении температуры воздуха?

Когда температура окружающей среды становится высокой, кровеносные сосуды кожи расширяются, через них протекает больше крови, кожа нагревается, отдача тепла в окружающую среду увеличивается. Если же температура окружающего воздуха падает, организм стремится сохранить тепло. Просветы кровеносных сосудов суживаются, отдача тепла уменьшается.

Вопрос 6. Какую роль играет кожа в процессе терморегуляции?

Через поверхность кожи теряется более 80% тепла. При расширении капилляров выделяется тепло, при сужении – сохраняется тепло. Выделение влаги с солями и мочевиной в виде пота. За эту функцию отвечает внутренний слой кожи – собственно кожа (дерма). Вот в этом и заключается роль кожи в процессе терморегуляции.

Вопрос 7. Что такое пот?

Пот - водный раствор солей и органических веществ, выделяемый потовыми железами. Испарение пота служит для терморегуляции у многих видов млекопитающих.

Вопрос 8. Как осуществляется потоотделение?

Потоотделение - процесс выделения на кожную поверхность жидкого секрета (пота) потовыми железами. У человека потоотделение осуществляется гл. обр. эккринными железами, располагающимися почти на всей кожной поверхности, тогда как секреция апокринных потовых желез редуцирована.

В норме потоотделение имеет рефлекторную природу. Начальным звеном рефлекса потоотделения являются терморецепторы кожи, внутренних органов и мышц, адекватным раздражением для которых служит высокая температура воздуха, прием горячей или острой пищи и жидкостей, повышенная теплопродукция при физических нагрузках, лихорадке или эмоциональных переживаниях. Эфферентные нервы, иннервирующие потовые железы, относятся к симпатической нервной системе, но имеют холинергическую природу; секреция пота усиливается под действием ацетилхолина и подавляется атропином.

В эфферентной части рефлекторной дуги потоотделительного рефлекса можно выделить 5 уровней: 1) путь от коры мозга к гипоталамусу; 2) от гипоталамуса к продолговатому мозгу; 3) от продолговатого мозга, частично перекрещиваясь, волокна подходят к нейронам боковых рогов спинного мозга на уровне Th2-L2; 4) от нейронов боковых рогов спинного мозга к узлам пограничной симпатической цепочки; 5) от нейронов симпатической цепочки к потовым железам.

Вопрос 9. Что влияет на интенсивность потоотделения?

На потоотделение влияет несколько причин. Это температура воздуха, его движение и влажность.

ПОДУМАЙТЕ

Почему температура тела человека не повышается даже в очень жаркую погоду?

В сильную жару, когда температура тела ниже температуры ок-ружающей среды, расширение сосудов уже не может усилить от¬дачу тепла. В этом случае опасность перегревания устраняется потоотделением. Испаряясь, пот поглощает с поверхности кожи большое количество тепла. Вот почему температура тела человека не повышается даже в самую жаркую погоду. Человек мог бы выдержать температуру в 70-80°С, но при этом у него должно выделиться 9-16 л пота за несколько часов.