Главная · Аппендицит · Глазной имплант. Бионический глаз – искусственная зрительная система Глазной имплантант

Глазной имплант. Бионический глаз – искусственная зрительная система Глазной имплантант

Многообещающие результаты показывают, что слепые пациенты могут восстановить зрение при помощи микрочипа, расположенного под сетчаткой. Это стало известно после окончания первой части второго клинического испытания устройства, прошедшего в Германии.

Пациенты, принимавшие участие в исследовании, отчет о котором был опубликован в «Судопроизводстве Королевского Сообщества», потеряли зрение в результате пигментной дистрофии сетчатки (ПДС). Они использовали устройство как в домашних условиях, так и за пределами своего жилища.

Пигментная дистрофия сетчатки – одно из наиболее распространенных унаследованных глазных расстройств. Ею страдает около 1,5 миллиона человек во всем мире. Это прогрессивное состояние, которое ухудшается с возрастом, становясь причиной больших проблем со зрением. Ретинальный (сетчаточный) имплантат вселяет надежду на возобновление зрения у людей, страдающих от ПДС.

Участники исследования могли без проблем читать, распознавать разные записи (телефонные номера, например), узнавать лица, а также разбирать обозначения на дверях.

Электронный глаз был произведен компанией «Retina Implant AG» в форме микрочипа размером три на три миллиметра. В микрочипе размещено 1500 электродов. Он имплантируется под сетчатку, обеспечивая искусственное зрение.

Для функционирования чипа требуется подзарядка. Он получает энергию индуктивно от катушки передатчика, вживленного под кожу. Ретинальный имплантат впитывает свет, попадающий на поверхность глаза, превращая его в электрическую энергию и стимулируя здоровые нервные окончания внутри сетчатки.

Стимуляция передается в мозг посредством оптического нерва, улучшая, таким образом, поле зрения.

В данном исследовании большая часть из девяти немецких пациентов смогли возвратить себе функциональное зрение при помощи субретинального имплантата. Наблюдение за субъектами научной работы велось на протяжении от трех до девяти месяцев после ее начала.

Профессор Эберхарт Цреннер , доктор медицины и руководитель клинических исследований, представляющий Институт Офтальмологических Исследований в глазной лечебнице при Университете Тюбигена (Германия), говорит:

«Результаты нашего первого клинического испытания превзошли ожидания, а результаты второго только укрепили нашу уверенность в том, что мы на правильном пути. Будучи врачами, мы постоянно ищем варианты улучшения условий лечения для наиболее нуждающихся в нем пациентов, к которым принадлежат и люди с последней стадией пигментной дистрофии сетчатки.

Данное исследование обеспечивает новые доказательства того, что технология субретинальных имплантатов может помочь некоторым пациентам восстановить функциональное зрение без использования какого-либо громоздкого оборудования».

На прошлой неделе Управление Питания и Фармацевтики (УПФ, США) одобрило использование ретинальной системы протезирования «Аргус II». Данное устройство помогает пациентам с последней стадией пигментной дистрофии сетчатки восстановить зрительное восприятие в небольших пределах. Приспособление состоит с крошечной видеокамеры, единицы обработки видеоинформации (ЕОВ), передатчика, который вмонтирован в очки, а также имплантированного ретинального протеза (искусственная сетчатка).

Id: 13318 46

Начну с того, что, когда я начала беспокоиться о внешнем виде своих глаз, мне, как и многим, пришла в голову мысль: "А ведь наверняка есть операция, которая может исправить мой дефект!" Так я наткнулась на всем нам известную блефаропластику. Но, как выяснилось, мне эта операция никак не подходит, поскольку направлена она на удаление излишков кожи и жировых грыж, а у меня под глазами наоборот, явно не хватает ̶н̶е̶много объема.

Однако, покопавшись в этой теме еще, я узнала о том, что при "запавших" глазах и явном недостатке объема в нижних веках, туда ставят имплантаты. Но информации об этой процедуре мне удалось найти совсем немного. Кстати, я видела небольшое упоминание об этом методе здесь, в чьем-то посте про блефаропластику, и даже прокомментировала, но найти сейчас не смогла.

Итак, информация с одного из сайтов гласит, что запавшие глаза - неприятное явление старения (меня такие фразы очень расстраивают, как будто я уже вся такая старая и разваливающаяся, с этой своей проблемой), и что целью постановки имплантатов является восполнение объема и выравнивание рельефа подглазничной области.

Так же там есть и про недостатки других методов, а именно про перераспределение жира при классической блефаропластике и липофилинг. Оба этих способа помогают восполнить необходимый объем под глазами, однако имеют ограничения при сильном "западении" глаз. Недостаток первого способа в том, что просто может не хватить объема жирового пакета, который удаляется при блефаропластике, а жир из него распределяется на нижнюю часть глаз. А недостаток липофилинга состоит в том, что при слишком большом количестве введенного жира под кожей появляются комочки и неровности. Именно эти ограничения и послужили толчком к созданию иплантатов.

Итак, процесс операции :

Имплантаты напоминают собой два полумесяца длиной около 4 см. Они изготавливаются из особого биоинертного (не вызывающего отторжения) материала. По форме и размеру все имплантаты одинаковы, и «подгоняются» под лицо пациента уже во время операции. Если операция проводится трансконъюктивальным способом, для их установки требуется два разреза: по слизистой нижнего века и внутри рта. С помощью верхнего разреза удаляются или перераспределяются жировые грыжи, подготавливается место для установки имплантата. С помощью внутриротового доступа размещается сам имплантат. Имплантаты надежно крепятся к костным структурам с помощью специальных мини-винтов и прикрываются сверху ("комуфлируются") жировыми пакетами.
При проведении блефаропластики открытым способом внутриротовой доступ не требуется. Для проведения всех манипуляций оказывается достаточно разреза по краю нижних ресниц. Этот тип операции чаще всего используется, когда блефаропластика совмещается с подтяжкой средней зоны лица и удалением молярных жировых мешков.

На другом сайте я нашла еще немного информации про имплантаты. Там тоже примерно так же описан процесс операции, и еше есть немного фотографий самих имплантатов. Имплантаты бывают разных форм и размеров, и, в зависимости от этого, могут корректировать не только область под глазами, но и соседние области, также нуждающиеся в дополнительном объеме, например, скулы или щеки.

имплант внутреннего + внешний + средняя +скулы
края орбиты край глаз часть лица

И, напоследок, о Послеоперационном периоде.

Для пациента ни операция, ни послеоперационный период после орбитального имплантирования ничем не отличается от обычной блефаропластики. Швы снимаются на 4-6 день. Синяки и отеки держатся до недели-двух.
Нельзя тереть глаза и щуриться в первые дни после операции– напряжение мышц может сдвинуть имплант. Поэтому так же следует избегать яркого света, а выходить на улицу необходимо в солнцезащитных очках или шляпе с полями, прикрывающими глаза.

Шляпа с полями, конечно, позабавила)

Но, несмотря на заманчивость этого метода, от себя скажу, что имплантаты меня пугают и вызывают чувство отторжения, как будто бы организм говорит: "не хочу я никаких чужеродных непонятных кусков чего-то внутри себя!" Все-таки это лицо, а не грудь или коленка, и область под глазами довольно деликатная, да и операция далеко не из легких. Возьмите все неприятности от проведения и реабилитации после блефаропластики и добавьте к ним то, что у вас под глазами будут еще и куски пластика, которые неизвестно как себя поведут.

В 2018 году 39 миллионов человек остаются слепыми. Из-за наследственных заболеваний, старения тканей, инфекций или травм. Одна из главных причин - это болезни сетчатки. Но наука развивается так быстро, что фантастика переходит из книг в лаборатории и операционные, снимая барьер за барьером. Ниже мы рассмотрим, какое будущее ждет офтальмологию, как будут лечить (и уже лечат), возвращать зрение, диагностировать недуги и восстанавливать глаза после операций.

Киборгизация: бионические глаза

Главный тренд офтальмологии будущего - бионические глаза. В 2018 году уже существуют 4 успешных проекта, и искусственные глаза сейчас - далеко не картинка из футуристического фэнтези.

Самый интересный проект - это Argus II от Second Sight. Устройство состоит из импланта, очков, камеры, кабеля и видеопроцессора. Имплант, имеющий передатчик, вживляется в сетчатку. Носимая с очками камера фиксирует изображения, которые процессор обрабатывает, генерируя сигнал, передатчик импланта принимает его и стимулирует клетки сетчатки. Так реконструируется зрение. Разработка изначально предназначалась для больных макулодистрофией. Это возрастное заболевание, оно сопровождается слабым кровоснабжением центра сетчатки и приводит к слепоте.

В чем недостаток технологии? Устройство стоит баснословные 150 тысяч долларов и не возвращает зрение полностью, лишь позволяя различать силуэты фигур. По состоянию на 2017 год 250 человек носят Argus II, что, безусловно, ничтожно мало.

У Argus II есть аналоги. Например, Boston Retinal Implant. Он тоже создан специально для пациентов с макулодистрофией и пигментным ретинитом (разложением фоторецепторов сетчатки). Он работает по похожему принципу, направляя сигналы нервным клеткам и создавая схематичное изображение объекта. Стоит назвать и IRIS, созданный для пациентов на последних стадиях деградации сетчатки. IRIS состоит из видеокамеры, носимого процессора и стимулятора. От них отличается Retina Implant AG. Имплант улавливает фотоны и активирует зрительный нерв, при этом устройство обходится без внешней камеры.

Импланты в головном мозге

Как ни странно, лечить зрение можно, не касаясь глаз. Для этого достаточно вживить в мозг чип, который будет стимулировать короткими электрическими разрядами зрительную кору. В этом направлении работает упомянутый выше Second Sight. Компания разработала альтернативную версию Argus II, которая совсем не затрагивает глаза и работает с мозгом напрямую. Девайс будет стимулировать нервные клетки током, извещая мозг о потоке света.

Искусственная сетчатка

Мы сказали, что пигментный ретинит поражает фоторецепторы сетчатки, из-за чего человек перестает воспринимать свет и слепнет. Это заболевание кодируется генетически. Сетчатка состоит из миллионов рецепторов. Мутация лишь в одном из 240 генов запускает их гибель и портит зрение, даже если связанные с ней зрительные нейроны будут целы. Как быть в этом случае? Имплантировать новую сетчатку. Искусственный аналог состоит из электропроводящего полимера с шелковой подложкой, завернутого в полимерный полупроводник. Когда падает свет, полупроводник поглощает фотоны. Вырабатывается ток и электрические разряды касаются нейронов сетчатки. Эксперимент с мышами показал, что при освещенности в 4-5 лк (Люксов), как в начале сумерек, мыши с имплантами реагируют на свет так же, как и здоровые грызуны. Томография подтвердила, что зрительная кора мозга крыс была активна. Неясно, будет ли разработка полезной для людей. Итальянский технологический институт (IIT) обещает отчитаться о результатах опытов в 2018 году.

Ошибка в коде

Носимые, вшиваемые и встраиваемые устройства - не единственная надежда офтальмологии. Для того, чтобы вернуть зрение, можно переписать генетический код, из-за ошибки в котором человек начал слепнуть. Метод CRISPR, который базируется на инъекции раствора с вирусом, несущим правильный вариант ДНК, излечивает наследственные заболевания. Исправление кода позволяет бороться с возрастной дегенерацией сетчатки, а также с амаврозом Лебера - крайне редким недугом, убивающим светочувствительные клетки. В мире им страдает около 6 тысяч человек. Препарат Luxturna обещает покончить с ним. Он содержит раствор с правильной версией гена RPE65, шифрующим структуру необходимых белков. Это инъекционный препарат - его вводят в глаз микроскопической иглой.

Диагностика и восстановление после операции

Сопровождающий нас повсюду смартфон - прекрасный инструмент для быстрой и точной диагностики. Например, синхронизированный со смартфоном офтальмоскоп Peek Vision позволяет делать снимки сетчатки где и когда угодно. А Google в 2016 году представил алгоритм анализа изображений, основанный на искусственном интеллекте, который позволяет выявлять признаки диабетической ретинопатии на снимках сетчатки. Алгоритм отыскивает мельчайшие аневризмы, указывающие на патологию. Диабетическая ретинопатия - это тяжелое поражение сосудов сетчатой оболочки глаза, ведущее к слепоте.

Будущее - за быстрым восстановлением после операций. Интересен препарат Cacicol, представленный турецкими исследователями в 2015 году. Их разработка снимает боль, повышенную чувствительность и жжение после операции на глазах. Препарат уже опробовали клинически: пациенты, которым сшивали роговицу (этот метод используется при лечении ее истончения - кератоконуса), отмечали снижение побочных эффектов.

Каким будет зрение будущего?

Уже сейчас офтальмология достигла поразительных успехов: прежде неизлечимую слепоту можно обратить, а наследственные заболевания побороть, переписав несколько участков генетического кода. В каком направлении будет идти развитие? Попробуем предположить:

Лучше предотвратить, чем лечить. Окулист в смартфоне и нейронная сеть, ставящая диагноз, обещают заметно сократить риск запущенных и едва излечимых болезней глаз. Дополненная реальность (AR) позволит распространять медицинские знания в игровой и необременительной форме. Уже сейчас есть приложения AR, моделирующие последствия катаракты и глаукомы. Знание, как известно, сила. Заменить, если нельзя вылечить. Киборгизация - это ключевой медицинский тренд. Нынешние разработки хороши, но они реконструируют зрение лишь отчасти, позволяя различать размытые контуры. В ближайшие 10 лет технология будет идти по пути повышения качества изображения и детализации. Важная задача - избавиться от носимых компонентов: камеры, очков, кабеля. Имплант должен стать мягче и, можно сказать, дружелюбнее для тканей человека, чтобы не ранить их. Вероятно, чипы без внешних вспомогательных элементов, вживляемые прямо в мозг - это самая перспективная ветка киборгизации зрения. Дешевле и доступнее: 150 тысяч долларов за устройство пока делают бионические глаза очень далекими от рынка и недосягаемыми для большинства больных. Следующий шаг - сделать их максимально доступными. Восстановление за часы: вживление чипов, коррекция сетчатки и даже исправление ДНК требуют хирургического вмешательства. Оно оставляет резь, жжение, фантомные боли и другие неприятные следствия. Препараты будущего будут регенерировать поврежденные ткани за часы. Фантастическое зрение для всех: мгновенный снимок с помощью глаза и сетчатка, подключенная к интернету, только сейчас выглядят как научная фантастика.

Пересадка целого глазного яблока - это крайне сложная операция. Имплантат сетчатки пересадить проще, но операция будет успешной только, если хирург придерживается всех тонкостей манипуляции. Это обусловлено тем, что ткань состоит из множества нервных клеток, которые легко повредить. Показаниями для подобных оперативных вмешательств являются дистрофия сетчатки, патология зрительного нерва и других глазных структур. Микрохирургическое вмешательство требует присутствия специального инструментария и высокой квалификации врача. Период восстановления после операции длительный и требует профилактики осложнений.

Ученые и медики еще не научились пересаживать глазное яблоко целиком. Подобные предложения должны вызывать у пациентов настороженность.

Виды операций

Их выделяют, опираясь на части глазного яблока, которые пересаживают. Поэтому существует такая классификация трансплантаций:

Для замены используют как донорскую, так и искусственную роговицу.

  • Пересадка роговицы. Эта операция является простой, поскольку трансплантируются поверхностные структуры, без проникновения в глубокие слои органа.
  • Имплантация сетчатки глаза. Это более сложный вариант оперативного вмешательства. Нервные клетки - палочки и колбочки, способны разрушаться при малейшем механическом или химическом воздействии.
  • Замена хрусталика. Эта естественная линза не имеет антигенных факторов, на которые бы отреагировала иммунная система человека. Поэтому новый хрусталик хорошо приживается.
  • Трансплантация биопротеза. В качестве последнего выступает искусственный глаз, представляющий собой скопление электродов, вместо сетчатки имплантируемых в глазное дно. От них к специальным очкам отходят преобразователи сигнала.
  • Пересадка имитатора. Под ним подразумевается искусственное глазное яблоко, которое не выполняет зрительных функций, а только замещает удаленный орган в эстетических целях.
  • Замена радужки. Она выполняется при аниридии - полном поражении или отсутствии радужной оболочки.

Материалы для пересадки

Выделяют биологические и искусственные имплантанты. В качестве первых выступают части глазного яблока умершего человека. Их изымают у донора сразу после гибели последнего. При этом все компоненты органа зрения немедленно помещают в специальные растворы во избежание влияния на них внешней среды. Эти структуры подлежат пересадке в течение нескольких часов. Чаще ими являются роговица и хрусталик. Искусственные же импланты изготовляются в специальных лабораториях. Они имеют микроскопическое строение и напоминают по функционалу здоровое глазное яблоко. Имитаторы органа зрения изготовляют из криолитового стекла или полиметакрилата.

Производители имплантатов


Имплант делают индивидуально для каждого пациента.

Искусственные глазные яблоки и отдельные их структуры изготавливаются индивидуально для каждого пациента с учетом его пожеланий и характеристик орбиты. За границей существует множество частных компаний, производящих подобные имплантаты. В России же, к примеру, иридо-хрусталиковая радужка изготавливается индивидуально, после внесения определенной суммы в качестве предоплаты за работу. Передовыми производителями протезов, имитирующих зрительные функции, являются Израиль и Швеция. А бионические глаза изготовляют Франция, Германия и Соединенные Штаты Америки.

Имплантант сетчатой оболочки глаза восстанавливает зрение и дает возможность видеть в инфракрасном спектре. Есть много видов слепоты, но такими тяжелым наследственными заболеваниями, как пигментный ретинит, страдают миллионы людей во всем мире. Многие из этих людей будут медленно терять свое зрение в течение долгих лет. Адаптация к потере зрения трудна в любом возрасте, но, наверное, особенно трудна, когда зрение теряется постепенно.

Чтобы как-то помочь таким больным, ученые из Германии изобрели микроминиатюрный имплантант в сетчатую оболочку глаза, который в некоторой степени восстанавливает зрение у слепых с пигментным ретинитом (это - постепенная деградация зрительного пигмента в клетках-рецепторах сетчатой оболочки). Имплантант представляет собой матрицу из 1500 фотодиодов, которую хирургическим способом располагают под сетчатой оболочкой. Свет, который попадает в глаз, воздействует на фотодиоды, которые генерируют электрический ток и передают его нижележащим нейронам.

В результате, пациенты, страдающие от пигментного ретинита, получают возможность видеть светлые и темные области, различать основные формы предметов уже через неделю после операции. Один из пациентов даже получил возможность читать большие буквы. Это, конечно, замечательно, но пациенты рассказывают, что они неожиданно получили способность “видеть” невидимый инфракрасный свет (“сверхэффект”). Конечно, имплантант предоставляет только очень примитивное зрение, но в расширенном спектральном диапазоне. Другими словами, люди с такими имплантантами могут в полной темноте “видеть” нагретые объекты, что недоступно обычным глазам.

Немецкие ученые пошли дальше и исследовали возможность дальнейшего увеличения функциональных возможностей имплантанта. Рядом с матрицей фотодиодов они расположили матрицу непосредственных точек стимуляции (нет фотодиодов, только электрические контакты). С помощью этой матрицы вновь имплантированные пациенты смогли увидеть маленькие точки, вертикальные и горизонтальные линии, и даже простые формы (например, форму буквы L).


А зачем еще матрица непосредственной стимуляции, если уже есть хорошей большой массив фотодиодов с высоким разрешением, чтобы было можно видеть вещи вокруг? Оказывается к этому "нормальному зрению" можно добавить “виртуальное кибернетическое зрение”. Например, подключить матрицу из непосредственных точек стимуляции к GPS. И тогда будет возможно видеть стрелку, которая будет указывать направление к месту, куда Вы хотите прийти. Действительно, многие фантасты указывали на пути именно такого кибернетического усовершенствования глаз. И, может быть, в далеком (или недалеком) будущем, подобные чипы будут вживляться и в нормальные глаза, чтобы расширить возможности человеческого зрения. И мы